2017

150.00 rub.
Buy article
2017/№4

Hypoxic pulmonary vasoconstriction

Sarybaev A. Sh., Sydykov A. S., Maripov A. M., Sartmyrzaeva M. A., Mamazhakypov A. T. National Center of Cardiology and Internal Medicine Kyrgyz Republic, Togolok Moldo str. 3, Bishkek 720040, Kyrgyz Republic

Keywords: hypoxia, pulmonary vasoconstriction, pulmonary artery pressure, pulmonary hypertension, high altitude pulmonary edema

DOI: 10.18087/rhj.2017.4.2331

Pulmonary vasoconstriction plays a key role in distribution of the blood flow in response to alveolar hypoxia thus providing adequate gas exchange. We review interspecies and interindividual differences, basic mechanisms, clinical meaning and pharmacological methods of modulation of the hypoxic pulmonary vasoconstriction.
  1. Parin VV. [Effect of pulmonary ventilation on the lesser circulation]. Patol Fiziol Eksp Ter. 1960;4:7–13.
  2. Thompson BT, Hales CA. Hypoxic pulmonary hypertension: acute and chronic. Heart Lung. 1986;15 (5):457–65.
  3. Suresh K, Shimoda LA. Lung Circulation. In: Terjung R, editor. Comprehensive Physiology [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2016 [cited 2017]. p. 897–943. Available from: http://doi.wiley.com/10.1002/cphy.c140049
  4. Zhou J, Zhang J, Lu Y, Huang S, Xiao R , Zeng X et al. Mitochondrial transplantation attenuates hypoxic pulmonary vasoconstriction. Oncotarget. 2016;7 (21):31284–98. DOI:10.18632/oncotarget.8893.
  5. Waypa GB, Marks JD, Guzy RD, Mungai PT, Schriewer JM, Dokic D et al. Superoxide Generated at Mitochondrial Complex III Triggers Acute Responses to Hypoxia in the Pulmonary Circulation. American Journal of Respiratory and Critical Care Medicine. 2013;187 (4):424–32. DOI:10.1164/rccm.201207-1294OC.
  6. Swenson ER . Hypoxic pulmonary vasoconstriction. High Alt Med Biol. 2013;14 (2):101–10. DOI:10.1089/ham.2013.1010.
  7. Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT. Hypoxic Pulmonary Vasoconstriction. Physiological Reviews. 2012;92 (1):367–520. DOI:10.1152/physrev.00041.2010.
  8. Hussain A, Suleiman MS, George SJ, Loubani M, Morice A. Hypoxic Pulmonary Vasoconstriction in Humans: Tale or Myth. The Open Cardiovascular Medicine Journal. 2017;11 (1):1–13. DOI:10.2174/1874192401711010001.
  9. Gao Y, Raj JU. Role of veins in regulation of pulmonary circulation. Am J Physiol Lung Cell Mol Physiol. 2005;288 (2):L213–226. DOI:10.1152/ajplung.00103.2004.
  10. Gao Y, Raj JU. Regulation of the Pulmonary Circulation in the Fetus and Newborn. Physiological Reviews. 2010;90 (4):1291–335. DOI:10.1152/physrev. 00032.2009.
  11. Rudolph AM. Fetal and neonatal pulmonary circulation. Annu Rev Physiol. 1979;41:383–95. DOI:10.1146/annurev.ph.41.030179.002123.
  12. Wagenvoort CA, Neufeld HN, Edwards JE. The structure of the pulmonary arterial tree in fetal and early postnatal life. Lab Invest. 1961;10:751–62.
  13. Rowe RD, James LS. The normal pulmonary arterial pressure during the first year of life. J Pediatr. 1957;51 (1):1–4.
  14. Wilkins MR, Ghofrani HA, Weissmann N, Aldashev A, Zhao L. Pathophysiology and Treatment of High Altitude Pulmonary Vascular Disease. Circulation. 2015;131 (6):582–90. DOI:10.1161/CIRCULATIONAHA.114.006977.
  15. Hughes JMB. Hypoxic pulmonary vasoconstriction: clinical implications. European Respiratory Journal. 2016;47 (1):31–4. DOI:10.1183/13993003.01753–2015.
  16. Marshall BE, Marshall C, Benumof J, Saidman LJ. Hypoxic pulmonary vasoconstriction in dogs: effects of lung segment size and oxygen tension. J Appl Physiol Respir Environ Exerc Physiol. 1981;51 (6):1543–51.
  17. Grover RF. Pulmonary circulation in animals and man at high altitude. Ann N Y Acad Sci. 1965;127 (1):632–9.
  18. Naeije R, Dedobbeleer C. Pulmonary hypertension and the right ventricle in hypoxia: Pulmonary hypertension and the right ven­tricle in hypoxia. Experimental Physiology. 2013;98 (8):1247–56. DOI:10.1113/expphysiol.2012.069112.
  19. Sylvester JT. Hypoxic pulmonary vasoconstriction: a radical view. Circ Res. 2001;88 (12):1228–30.
  20. Euler US. Observations on the pulmonary arterial blood pressure in the cat. APS. 1946;12 (4):301–20.
  21. Motley HL, Cournand A. The influence of short periods of induced acute anoxia upon pulmonary artery pressures in man. Am J Physiol. 1947;150 (2):315–20.
  22. Talbot NP. Two temporal components within the human pulmonary vascular response to 2 h of isocapnic hypoxia. Journal of Applied Physiology. 2004;98 (3):1125–39. DOI:10.1152/japplphysiol.00903.2004.
  23. Dorrington KL, Clar C, Young JD, Jonas M, Tansley JG, Robbins PA. Time course of the human pulmonary vascular response to 8 hours of isocapnic hypoxia. Am J Physiol. 1997;273 (3 Pt 2):H1126–1134.
  24. Connolly MJ, Prieto Lloret J, Becker S, Ward JPT, Aaronson PI. Hypoxic pulmonary vasoconstriction in the absence of pretone: essential role for intracellular Ca2+ release: HPV in absence of pretone: essential role for sustained Ca2+ release. The Journal of Physiology. 2013;591 (18):4473–98. DOI:10.1113/jphysiol.2013.253682.
  25. Kizub IV, Strielkov IV, Shaifta Y, Becker S, Prieto Lloret J, Snetkov VA et al. Gap junctions support the sustained phase of hypoxic pulmonary vasoconstriction by facilitating calcium sensitization. Cardiovascular Research. 2013;99 (3):404–11. DOI:10.1093/cvr/cvt129.
  26. Bakr A, Pak O, Taye A, Hamada F, Hemeida R , Janssen W et al. Effects of Dimethylarginine Dimethylaminohydrolase 1 Overexpression on the Response of the Pulmonary Vasculature to Hypoxia. American Journal of Respiratory Cell and Molecular Biology. 2013;49 (3):491–500. DOI:10.1165/rcmb.2012-0330OC.
  27. Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R et al. Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proceedings of the National Academy of Sciences. 2006;103 (50):19093–8. DOI:10.1073/pnas.0606728103.
  28. Weissmann N, Winterhalder S, Nollen M, Voswinckel R, Quanz K, Ghofrani HA et al. NO and reactive oxygen species are involved in biphasic hypoxic vasoconstriction of isolated rabbit lungs. Am J Physiol Lung Cell Mol Physiol. 2001;280 (4):L638–645.
  29. Grover RF, Reeves JT. Experimental induction of pulmonary hypertension in normal steers at high altitude. Med Thorac. 1962;19:543–50.
  30. Weir EK, Archer SL. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J. 1995;9 (2):183–9.
  31. Rhodes J. Comparative physiology of hypoxic pulmonary hyperten­sion: historical clues from brisket disease. Journal of Applied Physiology. 2004;98 (3):1092–100. DOI:10.1152/japplphysiol.01017.2004.
  32. Grover RF, Vogel JH, Averill KH, Blount SG. Pulmonary hyperten­sion. Individual and species variability relative to vascular reactivity. Am Heart J. 1963;66:1–3.
  33. Peake MD, Harabin AL, Brennan NJ, Sylvester JT. Steady-state vascular responses to graded hypoxia in isolated lungs of five species. J Appl Physiol Respir Environ Exerc Physiol. 1981;51 (5):1214–9.
  34. Suggett AJ, Mohammed FH, Barer GR . Angiotensin, hypoxia, verapamil and pulmonary vessels. Clin Exp Pharmacol Physiol. 1980;7 (3):263–74.
  35. Will DH, Alexander AF, Reeves JT, Grover RF. High altitude-induced pulmonary hypertension in normal cattle. Circ Res. 1962;10:172–7.
  36. McMurtry IF, Frith CH, Will DH. Cardiopulmonary responses of male and female swine to simulated high altitude. J Appl Physiol. 1973;35 (4):459–62.
  37. Hakim TS, Malik AB. Hypoxic vasoconstriction in blood and plasma perfused lungs. Respir Physiol. 1988;72 (1):109–21.
  38. Weissmann N, Akkayagil E, Quanz K, Schermuly RT, Ghofrani HA, Fink L et al. Basic features of hypoxic pulmonary vasoconstriction in mice. Respiratory Physiology & Neurobiology. 2004;139 (2):191–202. DOI:10.1016/j.resp.2003.10.003.
  39. Walker BR, Voelkel NF, McMurtry IF, Adams EM. Evidence for dimin­ished sensitivity of the hamster pulmonary vasculature to hypoxia. J Appl Physiol Respir Environ Exerc Physiol. 1982;52 (6):1571–4.
  40. Vogel JA, Genovese RL, Powell TL, Bishop GW, Bucci TJ, Harris CW. Cardiac size and pulmonary hypertension in dogs exposed to high altitude. Am J Vet Res. 1971;32 (12):2059–65.
  41. Thompson BT, Hassoun PM, Kradin RL, Hales CA. Acute and chronic hypoxic pulmonary hypertension in guinea pigs. J Appl Physiol. 1989;66 (2):920–8.
  42. Banchero N, Grover RF, Will JA. High altitude-induced pulmonary arterial hypertension in the llama (Lama glama). Am J Physiol. 1971;220 (2):422–7.
  43. Sakai A, Matsumoto T, Saitoh M, Matsuzaki T, Koizumi T, Ishizaki T et al. Cardiopulmonary hemodynamics of blue-sheep, Pseudois nayaur, as high altitude-adapted mammals. Jpn J Physiol. 2003;53 (5):377–84.
  44. Ge RL, Kubo K, Kobayashi T, Sekiguchi M, Honda T. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am J Physiol. 1998;274 (5 Pt 2):H1792–1799.
  45. Durmowicz AG, Hofmeister S, Kadyraliev TK, Aldashev AA, Stenmark KR . Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude. J Appl Physiol. 1993;74 (5):2276–85.
  46. Heath D, Williams D, Dickinson J. The pulmonary arteries of the yak. Cardiovasc Res. 1984;18 (3):133–9.
  47. Hambraeus Jonzon K, Bindslev L, Mellgård AJ, Hedenstierna G. Hypoxic pulmonary vasoconstriction in human lungs. A stimu­lus-response study. Anesthesiology. 1997;86 (2):308–15.
  48. Owen Thomas JB, Reeves JT. Hypoxia and pulmonary arterial pressure in the rabbit. J Physiol (Lond). 1969;201 (3):665–72.
  49. Moore LG, McMurtry IF, Reeves JT. Effects of sex hormones on cardiovascular and hematologic responses to chronic hypoxia in rats. Proc Soc Exp Biol Med. 1978;158 (4):658–62.
  50. Ahmed T, Oliver W, Frank BL, Robinson MJ, Wanner A. Hypoxic pulmonary vasoconstriction in conscious sheep: role of mast cell degranulation. Am Rev Respir Dis. 1982;126 (2):291–7. DOI:10.1164/arrd.1982.126.2.291.
  51. Hutchison AA, Ogletree ML, Snapper JR , Brigham KL. Effect of endotoxemia on hypoxic pulmonary vasoconstriction in unanesthetized sheep. J Appl Physiol. 1985;58 (5):1463–8.
  52. Weidman WH, Titus JL, Shepherd JT. Effect of chronic hypoxia on the pulmonary circulation of cats. Proc Soc Exp Biol Med. 1965;118:1158–64.
  53. Ahmed T, Oliver W, Wanner A. Variability of Hypoxic Pulmonary Vasoconstriction in Sheep: Role of Prostaglandins. American Review of Respiratory Disease. 1983;127 (1):59–62. DOI:10.1164/arrd.1983.127.1.59.
  54. Naeije R, Lejeune P, Vachiery JL, Leeman M, Melot C, Hallemans R et al. Restored Hypoxic Pulmonary Vasoconstriction by Peripheral Chemoreceptor Agonists in Dogs. American Review of Respiratory Disease. 1990;142 (4):789–95. DOI:10.1164/ajrccm/142.4.789.
  55. Westcott RN, Fowler NO, Scott RC, Hauenstein VD, McGuere J. Anoxia and human pulmonary vascular resistance. J Clin Invest. 1951;30 (9):957–70. DOI:10.1172/JCI102517.
  56. Doyle JT, Wilson JS, Warren JV. The pulmonary vascular responses to short-term hypoxia in human subjects. Circulation. 1952;5 (2):263–70.
  57. Vogel JH, Weaver WF, Rose RL, Blount SG, Grover RF. Pulmonary hypertension on exertion in normal man living at 10,150 feet (Leadville, Colorado). Med Thorac. 1962;19:461–77.
  58. Frise MC, Robbins PA. The pulmonary vasculature – lessons from Tibetans and from rare diseases of oxygen sensing. Exp Physiol. 2015;100 (11):1233–41. DOI:10.1113/expphysiol.2014.080507.
  59. Simonson TS, Powell FL. Less is more: blunted responses to hypoxia revealed in sealevel Tibetans. J Appl Physiol. 2014;116 (7):711–2. DOI:10.1152/japplphysiol.01110.2013.
  60. Hultgren HN. High altitude medicine. Stanford, Calif: Hultgren Publications; 1997. 550 p.
  61. Groves BM, Droma T, Sutton JR , McCullough RG, McCullough RE, Zhuang J et al. Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. J Appl Physiol. 1993;74 (1):312–8.
  62. Petousi N, Croft QPP, Cavalleri GL, Cheng HY, Formenti F, Ishida K et al. Tibetans living at sea level have a hyporespon­sive hypoxia-inducible factor system and blunted physiological responses to hypoxia. J Appl Physiol. 2014;116 (7):893–904. DOI:10.1152/japplphysiol.00535.2013.
  63. Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Gudermann T, Schulz R et al. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J. 2008;32 (6):1639–51. DOI:10.1183/09031936.00013908.
  64. Sommer N, Strielkov I, Pak O, Weissmann N. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J. 2016;47 (1):288–303. DOI:10.1183/13993003.00945–2015.
  65. Wang L, Yin J, Nickles HT, Ranke H, Tabuchi A, Hoffmann J et al. Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. J Clin Invest. 2012;122 (11):4218–30. DOI:10.1172/JCI59176.
  66. Aaronson PI, Robertson TP, Knock GA, Becker S, Lewis TH, Snetkov V et al. Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol (Lond). 2006;570 (Pt 1):53–8. DOI:10.1113/jphysiol.2005.098855.
  67. Shimoda LA, Laurie SS. HIF and pulmonary vascular responses to hypoxia. J Appl Physiol. 2014;116 (7):867–74. DOI:10.1152/japplphysiol.00643.2013.
  68. Gelband CH, Gelband H. Ca2+ release from intracellular stores is an initial step in hypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels. Circulation. 1997;96 (10):3647–54.
  69. Yang Z, Zhuan B, Yan Y, Jiang S, Wang T. Roles of different mitochondrial electron transport chain complexes in hypoxia-induced pulmonary vasoconstriction. Cell Biol Int. 2016;40 (2):188–95. DOI:10.1002/cbin.10550.
  70. Veit F, Pak O, Brandes RP, Weissmann N. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels. Antioxid Redox Signal. 2015;22 (6):537–52. DOI:10.1089/ars.2014.6234.
  71. Malczyk M, Veith C, Schermuly RT, Gudermann T, Dietrich A, Sommer N et al. NADPH oxidases-do they play a role in TRPC regulation under hypoxia? Pflugers Arch. 2016;468 (1):23–41. DOI:10.1007/s0042401517313.
  72. Archer SL, Souil E, Dinh-Xuan AT, Schremmer B, Mercier JC, El Yaagoubi A et al. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. Journal of Clinical Investigation. 1998;101 (11):2319–30. DOI:10.1172/JCI333.
  73. Firth AL, Yuill KH, Smirnov SV. Mitochondria-dependent regu­lation of Kv currents in rat pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2008;295 (1):L61–70. DOI:10.1152/ajplung.90243.2008.
  74. Robertson TP, Mustard KJW, Lewis TH, Clark JH, Wyatt CN, Blanco EA et al. AMP-activated protein kinase and hypoxic pulmonary vasoconstriction. Eur J Pharmacol. 2008;595 (1–3):39–43. DOI:10.1016/j.ejphar.2008.07.035.
  75. Evans AM, Lewis SA, Ogunbayo OA, Moral-Sanz J. Modulation of the LKB1-AMPK Signalling Pathway Underpins Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension. Adv Exp Med Biol. 2015;860:89–99. DOI:10.1007/978-3-319-18440=-1_11.
  76. Moral-Sanz J, Mahmoud AD, Ross FA, Eldstrom J, Fedida D, Hardie DG et al. AMP-activated protein kinase inhibits Kv 1.5 channel currents of pulmonary arterial myocytes in response to hypoxia and inhibition of mitochondrial oxidative phosphorylation. J Physiol (Lond). 2016;594 (17):4901–15. DOI:10.1113/JP272032.
  77. Weir EK, Olschewski A. Role of ion channels in acute and chronic responses of the pulmonary vasculature to hypoxia. Cardiovasc Res. 2006;71 (4):630–41. DOI:10.1016/j.cardiores.2006.04.014.
  78. Welsh DJ, Peacock AJ. Cellular responses to hypoxia in the pulmonary circulation. High Alt Med Biol. 2013;14 (2):111–6. DOI:10.1089/ham.2013.1016.
  79. Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994;372 (6503):231–6. DOI:10.1038/372231a0.
  80. Nossaman BD, Nossaman VE, Murthy SN, Kadowitz PJ. Role of the RhoA/Rho-kinase pathway in the regulation of pulmonary vasoconstrictor function. Can J Physiol Pharmacol. 2010;88 (1):1–8. DOI:10.1139/Y09–092.
  81. Fagan KA, Oka M, Bauer NR , Gebb SA, Ivy DD, Morris KG et al. Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol. 2004;287 (4):L656–664. DOI:10.1152/ajplung.00090.2003.
  82. Reho JJ, Zheng X, Fisher SA. Smooth muscle contractile diversity in the control of regional circulations. Am J Physiol Heart Circ Physiol. 2014;306 (2):H163–172. DOI:10.1152/ajpheart.00493.2013.
  83. Goldenberg NM, Wang L, Ranke H, Liedtke W, Tabuchi A, Kuebler WM. TRPV4 Is Required for Hypoxic Pulmonary Vasoconstriction. Anesthesiology. 2015;122 (6):1338–48. DOI:10.1097/ALN.0000000000000647.
  84. Yoo HY, Park SJ, Seo EY, Park KS, Han JA, Kim KS et al. Role of thromboxane A₂-activated nonselective cation channels in hypoxic pulmonary vasoconstriction of rat. Am J Physiol, Cell Physiol. 2012;302 (1):C307–317. DOI:10.1152/ajpcell.00153.2011.
  85. Smith KA, Voiriot G, Tang H, Fraidenburg DR , Song S, Yamamura H et al. Notch Activation of Ca (2+) Signaling in the Development of Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension. Am J Respir Cell Mol Biol. 2015;53 (3):355–67. DOI:10.1165/rcmb.2014-0235OC.
  86. Dietrich A, Gudermann T. TRPC6: physiological function and pathophysiological relevance. Handb Exp Pharmacol. 2014;222:157–88. DOI:10.1007/978-3-642-54215-2_7.
  87. Dietrich A, Kalwa H, Fuchs B, Grimminger F, Weissmann N, Gudermann T. In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium. 2007;42 (2):233–44. DOI:10.1016/j.ceca.2007.02.009.
  88. Zhang J, Zhou J, Cai L, Lu Y, Wang T, Zhu L et al. Extracellular calcium-sensing receptor is critical in hypoxic pulmonary vasoconstriction. Antioxid Redox Signal. 2012;17 (3):471–84. DOI:10.1089/ars.2011.4168.
  89. Tang H, Yamamura A, Yamamura H, Song S, Fraidenburg DR, Chen J et al. Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2016;310 (9):L846–859. DOI:10.1152/ajplung.00050.2016.
  90. Smith KA, Ayon RJ, Tang H, Makino A, Yuan JXJ. Calcium-Sensing Receptor Regulates Cytosolic [Ca(2+)] and Plays a Major Role in the Development of Pulmonary Hypertension. Front Physiol. 2016;7:517. DOI:10.3389/fphys.2016.00517.
  91. Yadav VR , Song T, Joseph L, Mei L, Zheng YM, Wang YX. Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2013;304 (3):L143–151. DOI:10.1152/ajplung.00310.2012.
  92. Strielkov IV, Kizub IV, Khromov AS, Soloviev AI. Evidence for the role of phosphatidylcholine-specific phospholipase C in sustained hypoxic pulmonary vasoconstriction. Vascul Pharmacol. 2013;58 (4):292–8. DOI:10.1016/j.vph.2013.02.002.
  93. Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW. Activation and regulation of store-operated calcium entry. Journal of Cellular and Molecular Medicine. 2010;14 (10):2337–49. DOI:10.1111/j.1582–4934.2010.01168.x.
  94. Zhang S. Role of Na+/Ca2+ exchange in regulating cytosolic Ca2+ in cultured human pulmonary artery smooth muscle cells. AJP: Cell Physiology. 2005;288 (2):C245–52. DOI:10.1152/ajpcell.00411.2004.
  95. Zhang S, Dong H, Rubin LJ, Yuan JXJ. Upregulation of Na+/Ca2+ exchanger contributes to the enhanced Ca2+ entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. AJP: Cell Physiology. 2007;292 (6):C2297–305. DOI:10.1152/ajpcell.00383.2006.
  96. Zhang J. New Insights into the Contribution of Arterial NCX to the Regulation of Myogenic Tone and Blood Pressure. Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. 2013;961:329–43. DOI:10.1007/978-1-4614-4756-6_28.
  97. Lemos VS, Poburko D, Liao CH, Cole WC, van Breemen C. Na+ entry via TRPC6 causes Ca2+ entry via NCX reversal in ATP stimulated smooth muscle cells. Biochem Biophys Res Commun. 2007;352 (1):130–4. DOI:10.1016/j.bbrc.2006.10.160.
  98. Cogolludo A, Moreno L, Frazziano G, Moral-Sanz J, Menendez C, Castañeda J et al. Activation of neutral sphingomyelinase is involved in acute hypoxic pulmonary vasoconstriction. Cardiovasc Res. 2009;82 (2):296–302. DOI:10.1093/cvr/cvn349.
  99. Frazziano G, Moreno L, Moral-Sanz J, Menendez C, Escolano L, Gonzalez C et al. Neutral sphingomyelinase, NADPH oxidase and reactive oxygen species. Role in acute hypoxic pulmonary vasocon­striction. J Cell Physiol. 2011;226 (10):2633–40. DOI:10.1002/jcp.22611.
  100. Moral-Sanz J, Gonzalez T, Menendez C, David M, Moreno L, Macias A et al. Ceramide inhibits Kv currents and contributes to TP-receptor-induced vasoconstriction in rat and human pulmonary arteries. Am J Physiol, Cell Physiol. 2011;301 (1):C186–194. DOI:10.1152/ajpcell.00243.2010.
  101. Moreno L, Moral-Sanz J, Morales-Cano D, Barreira B, Moreno E, Ferrarini A et al. Ceramide mediates acute oxygen sensing in vascular tissues. Antioxid Redox Signal. 2014;20 (1):1–14. DOI:10.1089/ars.2012.4752.
  102. Tabeling C, Yu H, Wang L, Ranke H, Goldenberg NM, Zabini D et al. CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction. Proc Natl Acad Sci USA. 2015;112 (13):E1614–1623. DOI:10.1073/pnas.1421190112.
  103. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 2009;24:97–106. DOI:10.1152/physiol.00045.2008.
  104. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148 (3):399–408. DOI:10.1016/j.cell.2012.01.021.
  105. Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redoxinduced changes. J Biol Chem. 1997;272 (36):22642–7.
  106. Kim YM, Barnes EA, Alvira CM, Ying L, Reddy S, Cornfield DN. Hypoxia-inducible factor-1α in pulmonary artery smooth muscle cells lowers vascular tone by decreasing myosin light chain phosphorylation. Circ Res. 2013;112 (9):1230–3. DOI:10.1161/CIRCRESAHA.112.300646.
  107. Cowburn AS, Crosby A, Macias D, Branco C, Colaço RDDR, Southwood M et al. HIF2α-arginase axis is essential for the deve­lopment of pulmonary hypertension. Proc Natl Acad Sci USA. 2016;113 (31):8801–6. DOI:10.1073/pnas.1602978113.
  108. Formenti F, Beer PA, Croft QPP, Dorrington KL, Gale DP, Lappin TRJ et al. Cardiopulmonary function in two human disorders of the hypoxia-inducible factor (HIF) pathway: von Hippel-Lindau disease and HIF-2alpha gain-of-function mutation. FASEB J. 2011;25 (6):2001–11. DOI:10.1096/fj.10–177378.
  109. Brimioulle S, Lejeune P, Vachiery JL, Leeman M, Melot C, Naeije R. Effects of acidosis and alkalosis on hypoxic pulmonary vasoconstriction in dogs. Am J Physiol. 1990;258 (2 Pt 2):H347–353.
  110. Croft QPP, Formenti F, Talbot NP, Lunn D, Robbins PA, Dorrington KL. Variations in alveolar partial pressure for carbon dioxide and oxygen have additive not synergistic acute effects on human pulmonary vasoconstriction. PLoS ONE. 2013;8 (7):e67886. DOI:10.1371/journal.pone.0067886.
  111. Goldenberg NM, Hare GMT. From the Journal archives: Understanding the mechanism (s) regulating hypoxic pulmonary vasoconstriction: how an early study has led to novel translational approaches. Can J Anaesth. 2014;61 (2):195–9. DOI:10.1007/s12630-013-0086-5.
  112. Ketabchi F, Egemnazarov B, Schermuly RT, Ghofrani HA, Seeger W, Grimminger F et al. Effects of hypercapnia with and without acidosis on hypoxic pulmonary vasoconstriction. Am J Physiol Lung Cell Mol Physiol. 2009;297 (5):L977–983. DOI:10.1152/ajplung.00074.2009.
  113. Wepler M, Beloiartsev A, Buswell MD, Panigrahy D, Malhotra R, Buys ES et al. Soluble epoxide hydrolase deficiency or inhibition enhances murine hypoxic pulmonary vasoconstriction after lipopolysaccharide challenge. Am J Physiol Lung Cell Mol Physiol. 2016;311 (6):L1213–21. DOI:10.1152/ajplung.00394.2016.
  114. Madden JA, Ahlf SB, Dantuma MW, Olson KR , Roerig DL. Precursors and inhibitors of hydrogen sulfide synthesis affect acute hypoxic pulmonary vasoconstriction in the intact lung. J Appl Physiol. 2012;112 (3):411–8. DOI:10.1152/japplphysiol.01049.2011.
  115. Prieto-Lloret J, Aaronson PI. Potentiation of Hypoxic Pulmonary Vasoconstriction by Hydrogen Sulfide Precursors 3-Mercapto­-pyruvate and D–Cysteine Is Blocked by the Cystathionine γ Lyase Inhibitor Propargylglycine. Adv Exp Med Biol. 2015;860:81–7. DOI:10.1007/978-3-319-18440-1_10.
  116. Crnkovic S, Egemnazarov B, Jain P, Seay U, Gattinger N, Marsh LM et al. NPY/Y₁ receptor-mediated vasoconstrictory and proliferative effects in pulmonary hypertension. Br J Pharmacol. 2014;171 (16):3895–907. DOI:10.1111/bph.12751.
  117. Zhou GL, Beloiartsev A, Yu B, Baron DM, Zhou W, Niedra R et al. Deletion of the murine cytochrome P450 Cyp2j locus by fused BAC-mediated recombination identifies a role for Cyp2j in the pulmonary vascular response to hypoxia. PLoS Genet. 2013;9 (11):e1003950. DOI:10.1371/journal.pgen.1003950.
  118. Keserü B, Barbosa-Sicard E, Popp R , Fisslthaler B, Dietrich A, Gudermann T et al. Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. FASEB J. 2008;22 (12):4306–15. DOI:10.1096/fj.08–112821.
  119. Han Y, Yan G, Wang Q, Ma G, Tang C, Gu Y et al. Predominant role of vasoconstrictors over dilatators derived from arachidonic acid in hypoxic pulmonary vasoconstriction. Mol Med Rep. 2013;8 (4):1263–71. DOI:10.3892/mmr.2013.1645.
  120. Kandhi S, Froogh G, Qin J, Luo M, Wolin MS, Huang A et al. EETs Elicit Direct Increases in Pulmonary Arterial Pressure in Mice. Am J Hypertens. 2016;29 (5):598–604. DOI:10.1093/ajh/hpv148.
  121. Asadi AK, Sá RC, Kim NH, Theilmann RJ, Hopkins SR, Buxton RB et al. Inhaled nitric oxide alters the distribution of blood flow in the healthy human lung, suggesting active hypoxic pulmonary vasoconstriction in normoxia. J Appl Physiol. 2015;118 (3):331–43. DOI:10.1152/japplphysiol.01354.2013.
  122. Smith TG, Balanos GM, Croft QPP, Talbot NP, Dorrington KL, Ratcliffe PJ et al. The increase in pulmonary arterial pressure caused by hypoxia depends on iron status: Iron and the pulmonary circulation. The Journal of Physiology. 2008;586 (24):5999–6005. DOI:10.1113/jphysiol.2008.60960.
  123. Lahm T, Patel KM, Crisostomo PR , Markel TA, Wang M, Herring C et al. Endogenous estrogen attenuates pulmonary artery vasoreactivity and acute hypoxic pulmonary vasoconstriction: the effects of sex and menstrual cycle. Am J Physiol Endocrinol Metab. 2007;293 (3):E865–871. DOI:10.1152/ajpendo.00201.2007.
  124. Lahm T, Crisostomo PR , Markel TA, Wang M, Wang Y, Weil B et al. Exogenous estrogen rapidly attenuates pulmonary artery vasore­activity and acute hypoxic pulmonary vasoconstriction. Shock. 2008;30 (6):660–7. DOI:10.1097/SHK.0b013e31816f239f.
  125. Xu D, Niu W, Luo Y, Zhang B, Liu M, Dong H et al. Endogenous estrogen attenuates hypoxia-induced pulmonary hypertension by inhibiting pulmonary arterial vasoconstriction and pulmonary arterial smooth muscle cells proliferation. Int J Med Sci. 2013;10 (6):771–81. DOI:10.7150/ijms.5906.
  126. Talbot NP, Croft QP, Curtis MK, Turner BE, Dorrington KL, Robbins PA et al. Contrasting effects of ascorbate and iron on the pulmonary vascular response to hypoxia in humans. Physiol Rep. 2014;2 (12). DOI:10.14814/phy2.12220.
  127. Frise MC, Robbins PA. Iron, oxygen, and the pulmonary circulation. J Appl Physiol. 2015;119 (12):1421–31. DOI:10.1152/japplphysiol.00179.2015.
  128. Morrell NW, Nijran KS, Biggs T, Seed WA. Changes in regional pulmonary blood flow during lobar bronchial occlusion in man. Clin Sci. 1994;86 (5):639–44.
  129. Morrell NW, Nijran KS, Biggs T, Seed WA. Regional matching of ventilation and perfusion during lobar bronchial occlusion in man. Clin Sci. 1995;88 (2):179–84.
  130. Morrell NW, Nijran KS, Biggs T, Seed WA. Magnitude and time course of acute hypoxic pulmonary vasoconstriction in man. Respir Physiol. 1995;100 (3):271–81.
  131. Grant JL, Naylor RW, Crandell WB. Bronchial adenoma resection with relief of hypoxic pulmonary vasoconstriction. Chest. 1980;77 (3):446–9.
  132. Ward HE, Jones RL, King EG, Sproule BJ, Fortune RL. Reversible ventilation and perfusion abnormalities in unilateral obstructed lung. Chest. 1982;81 (1):11–5.
  133. Jafri S, Sivasothy P, Wells F, Morrell NW. Clinical demonstration of efficiency and reversibility of hypoxic pulmonary vasoconstriction in a patient presenting with unilateral incomplete bronchial occlusion. Pulm Circ. 2011;1 (1):119–21. DOI:10.4103/2045–8932.78098.
  134. Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LRG, Mewburn JD et al. Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine. Chest. 2017;151 (1):181–92. DOI:10.1016/j.chest.2016.09.001.
  135. Nagendran J, Stewart K, Hoskinson M, Archer SL. An anesthesio­logist’s guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis. Curr Opin Anaesthesiol. 2006;19 (1):34–43. DOI:10.1097/01.aco.0000192777.09527.9e.
  136. Bjertnaes L, Mundal R, Hauge A, Nicolaysen A. Vascular resistance in atelectatic lungs: effects of inhalation anesthetics. Acta Anaesthesiol Scand. 1980;24 (2):109–18.
  137. Marshall C, Lindgren L, Marshall BE. Effects of halothane, enflu­rane, and isoflurane on hypoxic pulmonary vasoconstriction in rat lungs in vitro. Anesthesiology. 1984;60 (4):304–8.
  138. Ishibe Y, Gui X, Uno H, Shiokawa Y, Umeda T, Suekane K. Effect of sevoflurane on hypoxic pulmonary vasoconstriction in the perfused rabbit lung. Anesthesiology. 1993;79 (6):1348–53.
  139. Eisenkraft JB. Effects of anaesthetics on the pulmonary circulation. Br J Anaesth. 1990;65 (1):63–78.
  140. Peinado VI, Santos S, Ramírez J, Roca J, Rodriguez-Roisin R, Barberà JA. Response to hypoxia of pulmonary arteries in chro­nic obstructive pulmonary disease: an in vitro study. Eur Respir J. 2002;20 (2):332–8.
  141. Robinson TD, Freiberg DB, Regnis JA, Young IH. The role of hypoventilation and ventilation-perfusion redistribution in oxygen-induced hypercapnia during acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;161 (5):1524–9. DOI:10.1164/ajrccm.161.5.9904119.
  142. Hanson CW, Marshall BE, Frasch HF, Marshall C. Causes of hypercarbia with oxygen therapy in patients with chronic obstructive pulmonary disease. Crit Care Med. 1996;24 (1):23–8.
  143. Lumb AB, Slinger P. Hypoxic pulmonary vasoconstriction: phy­siology and anesthetic implications. Anesthesiology. 2015;122 (4):932–46. DOI:10.1097/ALN.000000000000569.
  144. Young IH, Bye PTP. Gas exchange in disease: asthma, chronic obstructive pulmonary disease, cystic fibrosis, and interstitial lung disease. Compr Physiol. 2011;1 (2):663–97. DOI:10.1002/cphy.c090012.
  145. Blanco I, Gimeno E, Munoz PA, Pizarro S, Gistau C, Rodriguez-Roisin R et al. Hemodynamic and gas exchange effects of sildenafil in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Am J Respir Crit Care Med. 2010;181 (3):270–8. DOI:10.1164/rccm.200907-0988OC.
  146. Melot C, Hallemans R , Naeije R , Mols P, Lejeune P. Deleterious effect of nifedipine on pulmonary gas exchange in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1984;130 (4):612–6. DOI:10.1164/arrd.1984.130.4.612.
  147. Petersson J, Glenny RW. Gas exchange and ventilation-perfusion relationships in the lung. Eur Respir J. 2014;44 (4):1023–41. DOI:10.1183/09031936.00037014.
  148. Naeije R, Brimioulle S. Physiology in medicine: importance of hypo­xic pulmonary vasoconstriction in maintaining arterial oxygenation during acute respiratory failure. Crit Care. 2001;5 (2):67–71.
  149. Rossaint R, Falke KJ, López F, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med. 1993;328 (6):399–405. DOI:10.1056/NEJM199302113280605.
  150. Zwissler B, Kemming G, Habler O, Kleen M, Merkel M, Haller M et al. Inhaled prostacyclin (PGI2) versus inhaled nitric oxide in adult respiratory distress syndrome. Am J Respir Crit Care Med. 1996;154 (6 Pt 1):1671–7. DOI:10.1164/ajrccm.154.6.8970353.
  151. Afshari A, Brok J, Møller AM, Wetterslev J. Aerosolized prostacyclin for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Cochrane Database Syst Rev. 2010; (8):CD007733. DOI:10.1002/14651858.CD007733 pub2.
  152. Gebistorf F, Karam O, Wetterslev J, Afshari A. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev. 2016; (6):CD002787. DOI:10.1002/14651858.CD002787.pub3.
  153. Mason NP, Petersen M, Mélot C, Imanow B, Matveykine O, Gautier MT et al. Serial changes in nasal potential difference and lung electrical impedance tomography at high altitude. Journal of Applied Physiology. 2003;94 (5):2043–50. DOI:10.1152/japplphysiol.00777.2002.
  154. Maggiorini M, Mélot C, Pierre S, Pfeiffer F, Greve I, Sartori C et al. High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation. 2001;103 (16):2078–83.
  155. Kronenberg RS, Safar P, Lee J, Wright F, Noble W, Wahrenbrock E et al. Pulmonary Artery Pressure and Alveolar Gas Exchange in Man during Acclimatization to 12,470 ft. Journal of Clinical Investigation. 1971;50 (4):827–37. DOI:10.1172/JCI106554.
  156. Dubowitz G, Peacock AJ. Pulmonary Artery Pressure in Healthy Subjects at 4250m Measured by Doppler Echocardiography. Wilderness & Environmental Medicine. 2007;18 (4):305–11. DOI:10.1580/07-WEME-OR-094R1.1.
  157. Swenson ER, Bärtsch P. High-altitude pulmonary edema. Compr Physiol. 2012;2 (4):2753–73. DOI:10.1002/cphy.c100029.
  158. Dehnert C. Identification of individuals susceptible to high-altitude pulmonary oedema at low altitude. European Respiratory Journal. 2005;25 (3):545–51. DOI:10.1183/09031936.05.00070404.
  159. Grünig E, Mereles D, Hildebrandt W, Swenson ER, Kübler W, Kuecherer H et al. Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema. J Am Coll Cardiol. 2000;35 (4):980–7.
  160. Dehnert C, Mereles D, Greiner S, Albers D, Scheurlen F, Zügel S et al. Exaggerated hypoxic pulmonary vasoconstriction without susceptibility to high altitude pulmonary edema. High Alt Med Biol. 2015;16 (1):11–7. DOI:10.1089/ham.2014.1117.
  161. Sartori C, Allemann Y, Trueb L, Lepori M, Maggiorini M, Nicod P et al. Exaggerated pulmonary hypertension is not sufficient to trigger high-altitude pulmonary oedema in humans. Schweiz Med Wochenschr. 2000;130 (11):385–9.
  162. Betz T, Dehnert C, Bärtsch P, Schommer K, Mairbäurl H. Does High Alveolar Fluid Reabsorption Prevent HAPE in Individuals with Exaggerated Pulmonary Hypertension in Hypoxia? High Alt Med Biol. 2015;16 (4):283–9. DOI:10.1089/ham.2015.0050.
  163. Langleben D, Jones RC, Aronovitz MJ, Hill NS, Ou LC, Reid LM. Pulmonary artery structural changes in two colonies of rats with different sensitivity to chronic hypoxia. Am J Pathol. 1987;128 (1):61–6.
  164. Ou LC, Sardella GL, Hill NS, Tenney SM. Acute and chronic pulmonary pressor responses to hypoxia: the role of blunting in acclimatization. Respir Physiol. 1986;64 (1):81–91.
  165. He LS, Chang SW, Voelkel NF. Pulmonary vascular reactivity in Fischer rats. J Appl Physiol. 1991;70 (4):1861–6.
  166. Hampson NB, Kregenow DA, Mahoney AM, Kirtland SH, Horan KL, Holm JR et al. Altitude exposures during commercial flight: a reappraisal. Aviat Space Environ Med. 2013;84 (1):27–31.
  167. García Río F, Borderías Clau L, Casanova Macario C, Celli BR, Escarrabill Sanglás J, González Mangado N et al. [Air travel and respiratory diseases]. Arch Bronconeumol. 2007;43 (2):101–25.
  168. Smith TG, Talbot NP, Chang RW, Wilkinson E, Nickol AH, Newman DG et al. Pulmonary artery pressure increases during com­mercial air travel in healthy passengers. Aviat Space Environ Med. 2012;83 (7):673–6.
  169. Smith TG, Chang RW, Robbins PA, Dorrington KL. Commercial air travel and in flight pulmonary hypertension. Aviat Space Environ Med. 2013;84 (1):65–7.
  170. Frostell CG, Blomqvist H, Hedenstierna G, Lundberg J, Zapol WM. Inhaled nitric oxide selectively reverses human hypoxic pulmonary vasoconstriction without causing systemic vasodilation. Anesthesiology. 1993;78 (3):427–35.
  171. Anand IS, Prasad BA, Chugh SS, Rao KR , Cornfield DN, Milla CE et al. Effects of inhaled nitric oxide and oxygen in high-altitude pulmonary edema. Circulation. 1998;98 (22):2441–5.
  172. Scherrer U, Vollenweider L, Delabays A, Savcic M, Eichenberger U, Kleger GR et al. Inhaled nitric oxide for high-altitude pulmonary edema. N Engl J Med. 1996;334 (10):624–9. DOI:10.1056/NEJM199603073341003.
  173. Zhao L, Mason NA, Morrell NW, Kojonazarov B, Sadykov A, Maripov A et al. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation. 2001;104 (4):424–8.
  174. Ghofrani HA, Reichenberger F, Kohstall MG, Mrosek EH, Seeger T, Olschewski H et al. Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a ran­domized, double-blind, placebo-controlled crossover trial. Ann Intern Med. 2004;141 (3):169–77.
  175. Ricart A, Maristany J, Fort N, Leal C, Pagés T, Viscor G. Effects of sildenafil on the human response to acute hypoxia and exercise. High Alt Med Biol. 2005;6 (1):43–9. DOI:10.1089/ham.2005.6.43.
  176. Pham I, Wuerzner G, Richalet JP, Peyrard S, Azizi M. Endothelin receptors blockade blunts hypoxia-induced increase in PAP in humans. European Journal of Clinical Investigation. 2010;40 (3):195–202. DOI:10.1111/j.1365–2362.2010.02254.x.
  177. Pham I, Wuerzner G, Richalet JP, Peyrard S, Azizi M. Bosentan effects in hypoxic pulmonary vasoconstriction: Preliminary study in subjects with or without high altitude pulmonary edema-history. Pulmonary Circulation. 2012;2 (1):28–33. DOI:10.4103/2045–8932.94824.
  178. Faoro V, Boldingh S, Moreels M, Martinez S, Lamotte M, Unger P et al. Bosentan Decreases Pulmonary Vascular Resistance and Improves Exercise Capacity in Acute Hypoxia. Chest. 2009;135 (5):1215–22. DOI:10.1378/chest.08–2222.
  179. Naeije R, Huez S, Lamotte M, Retailleau K, Neupane S, Abramowicz D et al. Pulmonary artery pressure limits exercise capacity at high altitude. European Respiratory Journal. 2010;36 (5):1049–55. DOI:10.1183/09031936.00024410.
  180. Balanos GM, Dorrington KL, Robbins PA. Desferrioxamine elevates pulmonary vascular resistance in humans: potential for involvement of HIF-1. Journal of Applied Physiology. 2002;92 (6):2501–7. DOI:10.1152/japplphysiol.00965.2001.
  181. Smith TG, Talbot NP, Privat C, Rivera-Ch M, Nickol AH, Ratcliffe PJ et al. Effects of Iron Supplementation and Depletion on Hypoxic Pulmonary Hypertension: Two Randomized Controlled Trials. JAMA. 2009;302 (13):1444. DOI:10.1001/jama.2009.1404.
Sarybaev A. Sh., Sydykov A. S., Maripov A. M., Sartmyrzaeva M. A., Mamazhakypov A. T. Hypoxic pulmonary vasoconstriction. Russian Heart Journal. 2017;16 (4):274–285

To access this material please log in or register

Register Authorize
Ru En