2017


To access this material please log in or register

Register Authorize
2017/№2

Biochemical aspects of gender differences in response to cardiac resynchronization therapy

Enina T. N., Kuznetsov V. A., Soldatova A. M., Petelina T. I., Krinochkin D. V., Rychkov A. Yu., Nochrina O. Yu.
"Tyumen Cardiology Science Center", Branch of the Federal State Budgetary Science Institution "Tomsk National Research Medical Center of the Russian Academy of Sciences", Melnikayte 111, Tyumen 625026

Keywords: cardiac resynchronization therapy, gender differences, cytokines, NT-proBNP, galectin-3, matrix metalloproteinase-9, tissue inhibitor of matrix metalloproteinase-1 and -4

DOI: 10.18087/rhj.2017.2.2323

Background. Cardiac resynchronization therapy (CRT) is known to be more effective for women than for men. However, gender specificity of this difference is understudied. Aim. To study gender-related differences in CRT effectiveness and to evaluate the effect of CRT on processes of immune inflammation and myocardial fibrosis in patients with chronic heart failure (CHF). Materials and methods. The best response to CRT at the mid-term of 15.0 [7.0; 26.0] months was evaluated in 77 patients (mean age, 55.9±8.2) with ischemic (65 %) and non-ischemic CHF. Patients were divided into two groups – group 1 (n=61; 79%), men and group 2 (n=16; 21%), women. Plasma levels of N-terminal pro-brain natriuretic peptide (NT-proBNP), interleukins (IL) -1β, -6, and -10, tumor necrosis factor α (TNF-α), С-reactive protein (CRP), galectin-3 (Gal-3), matrix metalloproteinase 9 (ММР-9), tissue inhibitors of metalloproteinases 1 and 4 (TIMP-1, TIMP-4), and MMP-9/TIMP-1 and MMP-9/TIMP-4 ratios were measured. Based on time-related changes in left ventricular end-systolic volume (LVESV) patients were defined as non-responders (<15% decrease in LVESV), responders (15–29% decrease in LVESV), and super-responders (>30% decrease in LVESV). Results. In group 2, there was a higher incidence of full left bundle branch block (81.3% vs. 47.5%, р=0.016); a greater number of super-responders (62.5 vs. 32.8%); and smaller numbers of non-responders (18.8 vs. 36.1%) and responders (18.8 vs. 31.1%) (р=0.03). In both groups, decreases in IL-6 (р<0.05), TNF-α (р<0.001; р<0.05), NT-proBNP (р=0.001; р<0.05), and Gal-3 (р<0.05) were observed. However, their changes were more pronounced in group 2; IL-6 was decreased by 44.4% vs. 23.5% (р=0.029), TNF-α – by 41.4% vs. 30.9%, NT-proBNP – by 73.3% vs. 46% (р=0.002), and Gal-3 – by 82.3% vs. 64.9%. Reduced levels of IL-10 (р<0.05), MMP-9 (р<0.05), and MMP-9/TIMP-4 (р<0.05) were also observed in group 1. Opposite changes in TIMP-1 were observed in the groups; a tendency to decrease in TIMP-1 in group 1 (p=0.054) and an increase in TIMP-1 in group 2 (р<0.05). Conclusion. The best response to CRT was associated with female gender, probably due to greater decreases in neurohormonal activation, immune inflammation, and myocardial fibrosis. Possibly, CRT influences the condition of extracellular cardiac matrix by reducing immune inflammation. Opposite changes in TIMP-1 in the groups may indicate gender-related peculiarities in the activity of the system of matrix metalloproteinases and their tissue inhibitors.
  1. Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KKL et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347(18):1397–402. DOI:10.1056/NEJMoa020265.
  2. Кузнецов В.А., Виноградова Т.О., Енина Т.Н., Колунин Г.В., Харац В.Е., Павлов А.В. и др. Влияние сердечной ресинхронизирующей терапии на выживаемость пациентов с кардиомиопатией ишемического и неишемического генеза в клинической практике. Терапевтический архив. 2012;84(8):52–6.
  3. Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt O-A et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J. 2013;34(29):2281–329. DOI:10.1093/eurheartj/eht150.
  4. Rickard J, Michtalik H, Sharma R , Berger Z, Iyoha E, Green AR et al. Use of Cardiac Resynchronization Therapy in the Medicare Population. -Rockville (MD): Agency for Healthcare Research and Quality (US); 2015. 181 с. (AHRQ Technology Assessments).
  5. Zusterzeel R , Spatz ES, Curtis JP, Sanders WE, Selzman KA, Piña IL et al. Cardiac resynchronization therapy in women versus men: observational comparative effectiveness study from the National Cardiovascular Data Registry. Circ Cardiovasc Qual Outcomes. 2015;8(2 Suppl 1):S4-11. DOI:10.1161/CIRCOUTCOMES.114.001548.
  6. Cheng Y-J, Zhang J, Li W-J, Lin X-X, Zeng W-T, Tang K et al. More favorable response to cardiac resynchronization therapy in women than in men. Circ Arrhythm Electrophysiol. 2014;7(5):807–15. DOI:10.1161/CIRCEP.113.001786.
  7. Biton Y, Zareba W, Goldenberg I, Klein H, McNitt S, Polonsky B et al. Sex Differences in Long-Term Outcomes With Cardiac Resynchronization Therapy in Mild Heart Failure Patients With Left Bundle Branch Block. J Am Heart Assoc. 2015;4(7). DOI:10.1161/JAHA.115.002013.
  8. Schuchert A, Muto C, Maounis T, Frank R , Ella RO, Polauck A et al. Gender-related safety and efficacy of cardiac resynchronization therapy. Clin Cardiol. 2013;36(11):683–90. DOI:10.1002/clc.22203.
  9. Solomon SD, Foster E, Bourgoun M, Shah A, Viloria E, Brown MW et al. Effect of cardiac resynchronization therapy on reverse remodeling and relation to outcome: multicenter automatic defibrillator implantation trial: cardiac resynchronization therapy. Circulation. 2010;122(10):985–92. DOI:10.1161/CIRCULATIONAHA.110.955039.
  10. Cheng A, Gold MR , Waggoner AD, Meyer TE, Seth M, Rapkin J et al. Potential mechanisms underlying the effect of gender on response to cardiac resynchronization therapy: insights from the SMART-AV multicenter trial. Heart Rhythm. 2012;9(5):736–41. DOI:10.1016/j.hrthm.2011.12.013.
  11. Xu Y-Z, Friedman PA, Webster T, Brooke K, Hodge DO, Wiste HJ et al. Cardiac resynchronization therapy: do women benefit more than men? J Cardiovasc Electrophysiol. 2012;23(2):172–8. DOI:10.1111/j.1540-8167.2011.02168.x.
  12. Mooyaart EAQ, Marsan NA, van Bommel RJ, Thijssen J, Borleffs CJW, Delgado V et al. Comparison of long-term survival of men versus women with heart failure treated with cardiac resynchronization therapy. Am J Cardiol. 2011;108(1):63–8. DOI:10.1016/j.amjcard.2011.02.345.
  13. Dhruva SS, Bero LA, Redberg RF. Gender bias in studies for Food and Drug Administration premarket approval of cardiovascular devices. Circ Cardiovasc Qual Outcomes. 2011;4(2):165–71. DOI:10.1161/CIRCOUTCOMES.110.958215.
  14. Zabarovskaja S, Gadler F, Braunschweig F, Ståhlberg M, Hörnsten J, Linde C et al. Women have better long-term prognosis than men after cardiac resynchronization therapy. Europace. 2012;14(8):1148–55. DOI:10.1093/europace/eus039.
  15. Alaeddini J, Wood MA, Amin MS, Ellenbogen KA. Gender disparity in the use of cardiac resynchronization therapy in the United States. Pacing Clin Electrophysiol. 2008;31(4):468–72. DOI:10.1111/j.1540-8159.2008.01016.x.
  16. Bristow MR , Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350(21):2140–50. DOI:10.1056/NEJMoa032423.
  17. Cleland JGF, Daubert J-C, Erdmann E, Freemantle N, Gras D, Kappenberger L et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–49. DOI:10.1056/NEJMoa050496.
  18. Gullestad L, Ueland T, Vinge LE, Finsen A, Yndestad A, Aukrust P. Inflammatory cytokines in heart failure: mediators and markers. Cardiology. 2012;122(1):23–35. DOI:10.1159/000338166.
  19. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106(1):55–62. DOI:10.1172/JCI8768.
  20. Lok DJA, Van Der Meer P, de la Porte PWB-A, Lipsic E, Van Wijngaarden J, Hillege HL et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol. 2010;99(5):323–8. DOI:10.1007/s00392-010-0125-y.
  21. Chen A, Hou W, Zhang Y, Chen Y, He B. Prognostic value of serum galectin-3 in patients with heart failure: a meta-analysis. Int J Cardiol. 2015;182:168–70. DOI:10.1016/j.ijcard.2014.12.137.
  22. Кузнецов В. А., Солдатова А. М., Енина Т. Н., Шебеко П. В., Рычков А. Ю., Мельников Н. Н. и др. Биомаркеры воспаления у больных с хронической сердечной недостаточностью и с имплантированными устройствами для сердечной ресинхронизирующей терапии. Кардиология. 2012;52(8):38–43.
  23. Rordorf R , Savastano S, Sanzo A, Spazzolini C, De Amici M, Camporotondo R et al. Tumor necrosis factor-α predicts response to cardiac resynchronization therapy in patients with chronic heart failure. Circ J. 2014;78(9):2232–9.
  24. Osmancik P, Herman D, Stros P, Linkova H, Vondrak K, Paskova E. Changes and prognostic impact of apoptotic and inflammatory cytokines in patients treated with cardiac resynchronization therapy. Cardiology. 2013;124(3):190–8. DOI:10.1159/000346621.
  25. Cai C, Hua W, Ding L-G, Wang J, Chen K-P, Yang X-W et al. High sensitivity C-reactive protein and cardfiac resynchronization therapy in patients with advanced heart failure. J Geriatr Cardiol. 2014;11(4):296–302. DOI:10.11909/j.issn.1671-5411.2014.04.004.
  26. Stanciu AE, Vatasescu RG, Stanciu MM, Iorgulescu C, Vasile AI, Dorobantu M. Cardiac resynchronization therapy in patients with chronic heart failure is associated with anti-inflammatory and anti-remodeling effects. Clin Biochem. 2013;46(3):230–4. DOI:10.1016/j.clinbiochem.2012.11.002.
  27. Li M, Zhou Y, Zhou Y, Babu K, Wang Y. Improvement in collagen metabolism after 12 weeks’ cardiac resynchronization therapy in patients with ischaemic cardiomyopathy. J Int Med Res. 2013;41(1):200–7. DOI:10.1177/0300060513475757.
  28. Tolosana JM, Mont L, Sitges M, Berruezo A, Delgado V, Vidal B et al. Plasma tissue inhibitor of matrix metalloproteinase-1 (TIMP-1): an independent predictor of poor response to cardiac resynchronization therapy. Eur J Heart Fail. 2010;12(5):492–8. DOI:10.1093/eurjhf/hfq037.
  29. Stolen CM, Adourian A, Meyer TE, Stein KM, Solomon SD. Plasma galectin-3 and heart failure outcomes in MADIT-CRT (multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy). J Card Fail. 2014;20(11):793–9. DOI:10.1016/j.cardfail.2014.07.018.
  30. Lopez-Andrès N, Rossignol P, Iraqi W, Fay R , Nuée J, Ghio S et al. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. Eur J Heart Fail. 2012;14(1):74–81. DOI:10.1093/eurjhf/hfr151.
  31. Кузнецов В. А., Солдатова А. М., Енина Т. Н., Петелина Т. И. Натрийуретический пептид и медиаторы воспаления у пациентов с различным ответом на сердечную ресинхронизирующую терапию. Журнал Сердечная Недостаточность. 2015;16(2):88–92. DOI:10.18087/rhfj.2015.2.2047.
  32. Dong Y-X, Burnett JC, Chen HH, Sandberg S, Yang Y-Z, Zhang Y et al. Effect of cardiac resynchronization therapy on broad neurohormone biomarkers in heart failure. J Interv Card Electrophysiol. 2011;30(3):241–9. DOI:10.1007/s10840-011-9551-7.
  33. Tarquini R , Guerra CT, Porciani MC, Michelucci A, Padeletti M, Ricciardi G et al. Effects of cardiac resynchronization therapy on systemic inflammation and neurohormonal pathways in heart failure. Cardiol J. 2009;16(6):545–52.
  34. Berger R , Shankar A, Fruhwald F, Fahrleitner-Pammer A, Freemantle N, Tavazzi L et al. Relationships between cardiac resynchronization therapy and N-terminal pro-brain natriuretic peptide in patients with heart failure and markers of cardiac dyssynchrony: an analysis from the Cardiac Resynchronization in Heart Failure (CARE-HF) study. Eur Heart J. 2009;30(17):2109–16. DOI:10.1093/eurheartj/ehp210.
  35. Boriani G, Regoli F, Saporito D, Martignani C, Toselli T, Biffi M et al. Neurohormones and inflammatory mediators in patients with heart failure undergoing cardiac resynchronization therapy: time courses and prediction of response. Peptides. 2006;27(7):1776–86. DOI:10.1016/j.peptides.2006.02.010.
  36. Seifert M, Schlegl M, Hoersch W, Fleck E, Doelger A, Stockburger M et al. Functional capacity and changes in the neurohormonal and cytokine status after long-term CRT in heart failure patients. Int J Cardiol. 2007;121(1):68–73. DOI:10.1016/j.ijcard.2007.04.069.
  37. Orrego CM, Nasir N, Oliveira GH, Flores-Arredondo JH, Cordero-Reyes AM, Loebe M et al. Cellular evidence of reverse cardiac remodeling induced by cardiac resynchronization therapy. Congest Heart Fail. 2011;17(3):140–6. DOI:10.1111/j.1751-7133.2011.00227.x.
  38. Tsai C-T, Wu C-K, Lee J-K, Chang S-N, Kuo Y-M, Wang Y-C et al. TNF-α down-regulates sarcoplasmic reticulum Ca2+ATPase expression and leads to left ventricular diastolic dysfunction through binding of NF-κB to promoter response element. Cardiovasc Res. 2015;105(3):318–29. DOI:10.1093/cvr/cvv008.
  39. Dinh W, Füth R , Nickl W, Krahn T, Ellinghaus P, Scheffold T et al. Elevated plasma levels of TNF-alpha and interleukin-6 in patients with diastolic dysfunction and glucose metabolism disorders. Cardiovasc Diabetol. 2009;8:58. DOI:10.1186/1475-2840-8-58.
  40. Truong QA, Januzzi JL, Szymonifka J, Thai W, Wai B, Lavender Z et al. Coronary sinus biomarker sampling compared to peripheral venous blood for predicting outcomes in patients with severe heart failure undergoing cardiac resynchronization therapy: the BIOCRT study. Heart Rhythm. 2014;11(12):2167–75. DOI:10.1016/j.hrthm.2014.07.007.
  41. Siwik DA, Chang DL, Colucci WS. Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res. 2000;86(12):1259–65.
  42. Corcoran MP, Meydani M, Lichtenstein AH, Schaefer EJ, Dillard A, Lamon-Fava S. Sex hormone modulation of proinflammatory cytokine and C-reactive protein expression in macrophages from older men and postmenopausal women. J Endocrinol. 2010;206(2):217–24. DOI:10.1677/JOE-10-0057.
  43. Zhao Z, Wang H, Jessup JA, Lindsey SH, Chappell MC, Groban L. Role of estrogen in diastolic dysfunction. Am J Physiol Heart Circ Physiol. 2014;306(5):H628-640. DOI:10.1152/ajpheart.00859.2013.
  44. Voloshenyuk TG, Gardner JD. Estrogen improves TIMP-MMP balance and collagen distribution in volume-overloaded hearts of ovariectomized females. Am J Physiol Regul Integr Comp Physiol. 2010;299(2):R683-693. DOI:10.1152/ajpregu.00162.2010.
  45. Ishikawa T, Harada T, Kubota T, Aso T. Testosterone inhibits matrix metalloproteinase-1 production in human endometrial stromal cells in vitro. Reproduction. 007;133(6):1233–9. DOI:10.1530/rep.1.01089.
Enina T. N., Kuznetsov V. A., Soldatova A. M., Petelina T. I., Krinochkin D. V., Rychkov A. Yu. et al. Biochemical aspects of gender differences in response to cardiac resynchronization therapy. Russian Heart Journal. 2017;16 (2):103–109

To access this material please log in or register

Register Authorize
Ru En