2015


To access this material please log in or register

Register Authorize
2015/№4

Protection of myocardium with trimetazidine during elective endovascular treatment for ischemic heart disease in patients with disturbed carbohydrate metabolism

Vershinina E. O., Repin A. N.
Federal State Budgetary Institution, “Research Institute of Cardiology” of the Russian Academy of Medical Sciences Siberian Branch, Kievskaya, Tomsk 634012

Keywords: CAD, stable angina, stenting, coronary arteries, trimetazidine, type 2 diabetes mellitus

DOI: 10.18087/rhj.2015.4.2091

Background. Myocardial protection in patients with disturbed carbohydrate metabolism during interventional therapy for IHD remains relevant. Aim. To study the effect of a metabolic drug, trimetazidine (TMZ), on the size of acute myocardial injury during elective endovascular interventions on coronary vessels in patients with stable IHD associated with disturbed carbohydrate metabolism. Materials and methods. This open-label, prospective, randomized, controlled clinical study included 63 IHD patients with disturbed carbohydrate metabolism. Elective coronary stenting was performed for all patients. Patients of the main group (n=32) received TMZ (Preductal MB, Servier) 35 mg bid in addition to a standard therapy for two weeks prior to the intervention. For patients of the control group (n=31), the transcutaneous coronary intervention and follow-up were performed against the background of the standard therapy without addition of metabolic drugs. Results. TMZ was cardioprotective, which was confirmed by changes in troponin I concentration. In the control group, the level of troponin I significantly increased for 12 hours from 0.66 (0.51–0.91) ng / ml at baseline to 0.88 (0.71–0.1) ng / ml at 12 h (р≤0.05). This statistically significant increase in troponin I level persisted for up to 5 days. In the main group, no significant increase in troponin I from the baseline was observed at 12 h or later (0.54 (0.43–0.69) ng / ml at baseline vs. 0.54 (0.41–0.55) ng / ml at 12 h, р≥0.05). Blood levels of CK-MB were 9.5 (7–13) U / l in the main group and 11 (9–13) U / l in the control group (р=0.37). At 12 h of the intervention, the level of CK-MB was increased to 16.3 (9.9–20.9) U / l and 18.9 (16.1–25.3) U / L, respectively (р=0.035). The statistically significant difference between the groups in the CK-MB level remained for up to 3 days of follow-up.
  1. Seidell JC. Obesity, insulin resistance and diabetes – a worldwide epidemic. Br J Nutr. 2000 Mar;83 Suppl 1: S5–8.
  2. Cook SS, Windecker S. Surgical versus percutaneous revascularization of coronary artery disease in diabetic patients. Best Practice & Research Clinical Endocrinology & Metabolism. 2009 Jun;23 (3):317–334.
  3. Cook SS, Windecker S. Revascularisation of Coronary Artery Disease in Patients with Diabetes Mellitus. Swiss Medical Weekly, 2009;139 (45-46):654–664.
  4. Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339 (4):229–234.
  5. Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T et al. Guidelines on myocardial revascularization. Eur Heart J. 2010 Oct;31 (20):2501–5.
  6. Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy. Eur Heart J. 2013 Aug;34 (31):2436–43.
  7. Вершинина Е. О., Репин А. Н., Рябова Т. Р., Гольцов С. Г. Ближайшие и отдалённые результаты плановых эндоваскулярных вмешательств на коронарных артериях и влияние на них нарушений углеводного обмена. Сибирский медицинский журнал (Томск). 2013;28 (4):28–35.
  8. Carrozza JP Jr, Kuntz RE, Levine MJ, Pomerantz RM, Fishman RF, Mansour M et al. Angiographic and clinical outcome of intracoronary stenting: immediate and long- term results from a large single-center experience. J Am Coll Cardiol. 1992 Aug;20 (2):328–37.
  9. Rydén L, Standl E, Bartnik M, Van den Berghe G, Betteridge J, de Boer MJ et al. Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur Heart J. 2007 Jan;28 (1):88–136.
  10. Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O'Shaughnessy C et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003 Oct 2;349 (14):1315–23.
  11. Grube E, Silber S, Hauptmann KE, Mueller R, Buellesfeld L, Gerckens U et al. TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation. 2003 Jan 7;107 (1):38–42.
  12. Scrutinio D, Giannuzzi P. Comorbidity in patients undergoing coro­nary artery bypass graft surgery: impact on outcome and implications for cardiac rehabilitation. Eur J Cardiovasc Prev Rehabil. 2008 Aug;15 (4):379–85.
  13. Balakumar P, Sharma NK. Healing the diabetic heart: does myocardial preconditioning work? Cell Signal. 2012 Jan;24 (1):53–9.
  14. Дедов И. И., Александров А. А. Диабетическое сердце: основные закономерности. Сердце. 2004;3 (1):5–8.
  15. Folli F, Corradi D, Fanti P, Davalli A, Paez A, Giaccari A et al. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mecha­nistic-based therapeutic approach. Curr Diabetes Rev. 2011 Sep;7 (5):313–24.
  16. Pantos C, Mourouzis I, Cokkinos DV. Protection of the abnormal heart. Heart Fail Rev. 2007 Dec;12 (3-4):319–30.
  17. Cokkinos DV, Pantos C. Myocardial protection in man – from research concept to clinical practice. Heart Fail Rev. 2007 Dec;12 (3-4):345–62.
  18. Диагностика и лечение стабильной стенокардии. Российские рекомендации (второй пересмотр). Кардиоваскулярная терапия и профилактика. 2008;6 (приложение 4):40 с.
  19. Brener SJ, Ellis SG, Schneider J, Topol EJ. Frequency and long-term impact of myonecrosis after coronary stenting. Eur Heart J. 2002 Jun;23 (11):869–76.
  20. Nageh T, Sherwood RA, Harris BM, Thomas MR. Prognostic role of cardiac troponin I after percutaneous coronary intervention in stable coronary disease. Heart. 2005 Sep;91 (9):1181–5.
  21. Narins CR, Miller DP, Califf RM, Topol EJ. The relationship between periprocedural myocardial infarction and subsequent target vessel revascularization following percutaneous coronary revascularization: insights from the EPIC trial. Evaluation of IIb / IIIa platelet receptor antagonist 7E3 in Preventing Ischemic Complications. J Am Coll Cardiol. 1999 Mar;33 (3):647–53.
  22. Redwood SR, Popma JJ, Kent KM, Pichard AD, Satler LF, Leon MB. ‘Minor’ CPK-MB elevations are associated with increased late mortality following ablative new-device angioplasty in native coronary arteries. Circulation. 1995;92: (Suppl I): I-544.
  23. Raedschelders K, Ansley DM, Chen DD. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther. 2012 Feb;133 (2):230–55.
  24. Folli F, Corradi D, Fanti P, Davalli A, Paez A, Giaccari A et al. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mecha­nistic-based therapeutic approach. Curr Diabetes Rev. 2011 Sep;7 (5):313–24.
  25. Takayanagi R, Inoguchi T, Ohnaka K. Clinical and experimental evidence for oxidative stress as an exacerbating factor of diabetes mellitus. J Clin Biochem Nutr. 2011 Jan;48 (1):72–7.
  26. Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3‑ketoacyl coenzyme A thiolase. Circ Res. 2000;86 (5):580–588.
  27. Ikizler M, Erkasap N, Dernek S, Batmaz B, Kural T, Kaygisiz Z. Trimetazidine-induced enhancement of myocardial recovery during reperfusion: a comparative study in diabetic and non-diabetic rat hearts. Arch Med Res. 2006 Aug;37 (6):700–8.
  28. Люсов В. А., Волов Н. А., Гордеев И. Г., Лебедева А. Ю., Бекчиу Е. А., Ильина Е. Е. Роль миокардиальной цитопротекции в коррекции ишемического и реперфузионного повреждения миокарда у больных стабильной стенокардией, перенесших транслюминальную баллонную ангиопластику и стентирование коронарных артерий. Российский кардиологический журнал. 2006;1:33–38.
  29. Bonello L, Sbragia P, Amabile N et al. Protective effect of an acute oral loading dose of trimetazidine on myocardial injury following percutaneous coronary intervention. Heart. 2007;93 (6):703–707.
  30. Iskesen I, Kurdal AT, Eserdag M, Cerrahoglu M, Sirin BH. Trimetazidine may protect the myocardium during cardiac surgery. Heart Surg Forum. 2009 Jun;12 (3):E175–9.
  31. Labrou A, Giannoglou G, Zioutas D, Fragakis N, Katsaris G, Louridas G. Trimetazidine administration minimizes myocardial damage and improves left ventricular function after percutaneous coronary intervention. Am J Cardiovasc Drugs. 2007;7 (2):143–50.
  32. Rodríguez Padial L, Maicas Bellido C, Velázquez Martín M, Gil Polo B. [A prospective study on trimetazidine effectiveness and tolerability in diabetic patients in association to the previous treatment of their coronary disease. DIETRIC study]. Rev Clin Esp. 2005 Feb;205 (2):57–62.
  33. Marazzi G, Wajngarten M, Vitale C, Patrizi R, Pelliccia F, Gebara O et al. Effect of free fatty acid inhibition on silent and symptomatic myocardial ischemia in diabetic patients with coronary artery disease. Int J Cardiol. 2007 Aug 9;120 (1):79–84.
Vershinina E. O., Repin A. N. Protection of myocardium with trimetazidine during elective endovascular treatment for ischemic heart disease in patients with disturbed carbohydrate metabolism. Russian Heart Journal. 2015;14 (4):187–192

To access this material please log in or register

Register Authorize
Ru En