2013


To access this material please log in or register

Register Authorize
2013/№5

Circulating endothelial progenitor cells and complications of cardiovascular diseases: Role of angiotensin converting enzyme inhibitors

Gilyarevsky S. R., Golshmid M. V., Kuzmina I. M.

Keywords: ACE inhibitors, treatment, perindopril, cardiovascular diseases

DOI: 10.18087/rhj.2013.5.1877

Cell therapy is a promising approach to enhanced treatment of patients with complicated CVD. However at the present time, such therapy cannot be considered routine due to limited evidence database and some ambiguity in methods of practical implementation. In these conditions, of special interest are the data obtained on animal models demonstrating a possibility for increasing the number of endothelial progenitor cells (EPC) and for improving their function by using ACE inhibitors, specifically perindopril. The obtained data can additionally justify the use of ACE inhibitors as first-line drugs for prevention of CVD complications in a large patient contingent.
  1. Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med. 2003;9 (6):702–712.
  2. Michowitz Y, Goldstein E, Wexler D et al. Circulating endothelial progenitor cells and clinical outcome in patients with congestive heart failure. Heart. 2007;93 (9):1046–1050.
  3. Gill M, Dias S, Hattori K et al. Vascular trauma induces rapid but transient mobilization of VEGFR2 (+) AC133 (+) endothelial precursor cells. Circ Res. 2001;88 (2):167–174.
  4. Shintani S, Murohara T, Ikeda H et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation. 2001;103 (23):2776–2779.
  5. George J, Goldstein E, Abashidze S et al. Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. Eur Heart J. 2004;25 (12):1003–1008.
  6. Hill JM, Zalos G, Halcox JP et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348 (7):593–600.
  7. Ghani U, Shuaib A, Salam A et al. Endothelial progenitor cells du­ring cerebrovascular disease. Stroke. 2005;36 (1):151–153.
  8. Vasa M, Fichtlscherer S, Aicher A et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlates with risk factors for coronary artery disease. Circ Res. 2001;89 (1):E1–7.
  9. Rauscher FM, Goldschmidt-Clermont PJ, Davis BH et al. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation. 2003; 108 (4):457–463.
  10. George J, Herz I, Goldstein E et al. Number and adhesive properties of circulating endothelial progenitor cells in patients with in-stent restenosis. Arterioscler Thromb Vasc Biol. 2003;23 (12):e57–60.
  11. Silvestre JS, Lévy BI. Circulating progenitor cells and cardiovascular outcomes: latest evidence on angiotensin-converting enzyme inhibitors. Eur Heart J 2009; (Suppl 11):E17‑E21.
  12. Povsic TJ, Goldschmidt-Clermont PJ. Endothelial progenitor cells: markers of vascular reparative capacity. Ther Adv Cardiovasc Dis. 2008;2 (3):199–213.
  13. You D, Waeckel L, Ebrahimian T. G et al. Increase in vascular permeability and vasodilation are critical for proangiogenic effects of stem cell therapy. Circulation. 2006;114 (4):328–338.
  14. Rehman J, Li J, Orschell CM, March KL. Peripheral blood ‘endothelial progenitor cells’ are derived from monocyte / macrophages and secrete angiogenic growth factors. Circulation. 2003;107 (8):1164–1169.
  15. Abu El-Asrar AM, Nawaz MI, Kangave D et al. Angiogenic and vasculogenic factors in the vitreous from patients with proliferative diabetic retinopathy. J Diabetes Res 2013;2013:539658. doi: 10.1155 / 2013 / 539658. Epub 2013 Mar 10.
  16. Urbich C, Heeschen C, Aicher A et al. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation. 2003;108 (20):2511–2516.
  17. Heiss C, Keymel S, Niesler U et al. Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol. 2005;45 (9):1441–1448.
  18. Fadini GP, de Kreutzenberg S, Albiero M et al. Gender differences in endothelial progenitor cells and cardiovascular risk profile: the role of female estrogens. Arterioscler Thromb Vasc Biol. 2008;28 (5):997–1004.
  19. Bulut D, Tuns H, Mugge A. Cd31+ / annexin v+ microparticles in healthy offsprings of patients with coronary artery disease. Eur J Clin Invest. 2009;39 (1):17–22.
  20. Humpert PM, Neuwirth R, Battista MJ et al. Sdf-1 genotype influences insulin-dependent mobilization of adult progenitor cells in type 2 diabetes. Diabetes Care. 2005;28 (4):934–936.
  21. Kondo T, Hayashi M, Takeshita K et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol. 2004;24 (8):1442–1447.
  22. Di Stefano R, Barsotti MC, Felice F et al. Smoking and endothelial progenitor cells: a revision of literature. Curr Pharm Des. 2010;16 (23):2559–2566.
  23. Ludwig A, Jochmann N, Kertesz A et al. Smoking decreases the level of circulating cd34+ progenitor cells in young healthy women – a pilot study. BMC Womens Health 2010;10:20. doi: 10.1186 / 1472‑6874‑10‑20.
  24. Yue WS, Wang M, Yan GH et al. Smoking is associated with depletion of circulating endothelial pro- genitor cells and elevated pulmonary artery systolic pressure in patients with coronary artery disease. Am J Cardiol. 2010;106 (9):1248–1254.
  25. Michaud SE, Dussault S, Haddad P et al. Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis. 2006;187 (2):423–432.
  26. Pirro M, Schillaci G, Menecali C et al. Reduced number of circula­ting endothelial progenitors and HOXA9 expression in CD34+ cells of hypertensive patients. J Hypertens. 2007;25 (10):2093–2039.
  27. Oliveras A, Soler MJ, Martinez-Estrada OM et al. Endothelial progenitor cells are reduced in refractory hypertension. J Hum Hypertens. 2008;22 (3):183–190.
  28. Umemura T, Soga J, Hidaka T et al. Aging and hypertension are independent risk factors for reduced number of circulating endothelial progenitor cells. Am J Hypertens. 2008;21 (11):1203–1209.
  29. Giannotti G, Doerries C, Mocharla PS et al. Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction. Hypertension. 2010;55 (6):1389–1397.
  30. Delva P, Degan M, Vallerio P et al. Endothelial progenitor cells in patients with essential hypertension. J Hypertens. 2007;25 (1):127–132.
  31. Yang Z, Chen L, Su C et al. Impaired endothelial progenitor cell activity is associated with reduced arterial elasticity in patients with essential hypertension. Clin Exp Hypertens. 2010;32 (7):444–452.
  32. Lee CW, Huang PH, Huang SS et al. Decreased circulating endothelial progenitor cell levels and function in essential hypertensive patients with electrocardiographic left ventricular hypertrophy. Hypertens Res. 2011;34 (9):999–1003.
  33. Rossi F, Bertone C, Montanile F et al. HDL cholesterol is a strong determinant of endothelial progenitor cells in hypercholestero­lemic subjects. Microvasc Res. 2010;80 (2):274–279.
  34. Chen JZ, Zhang FR, Tao QM et al. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci (Lond). 2004;107 (3):273–280.
  35. Heida NM, Muller JP, Cheng IF et al. Effects of obesity and weight loss on the functional properties of early outgrowth endothelial progenitor cells. Clin Sci (Lond). 2010;119 (12):545.
  36. Tobler K, Freudenthaler A, Baumgartner-Parzer SM et al. Reduction of both number and proliferative activity of human endothelial progenitor cells in obesity. Int J Obes (Lond). 2010;34 (4):687–700.
  37. Muller-Ehmsen J, Braun D, Schneider T et al. Decreased number of circulating progenitor cells in obesity: beneficial effects of weight reduction. Eur Heart J. 2008;29 (12):1560–1568.
  38. Egan CG, Lavery R, Caporali F et al. Generalised reduction of putative endothelial progenitors and cxcr4‑positive peripheral blood cells in type 2 diabetes. Diabetologia. 2008;51 (7):1296–1305.
  39. Loomans CJ, de Koning EJ, Staal FJ et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004;53 (1):195–199.
  40. Fadini GP, Pucci L, Vanacore R et al. Glucose tolerance is negatively associated with circulating progenitor cell levels. Diabetologia. 2007;50 (10):2156–2163.
  41. Fadini GP, Miorin M, Facco M et al. Circulating endothelial proge­nitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol. 2005;45 (9):1449–1457.
  42. Seeger FH, Haendeler J, Walter DH et al. p38 mitogen-activa­ted protein kinase downregulates endothelial progenitor cells. Circulation. 2005;111 (9):1184–1191.
  43. Tongers J, Losordo DW, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J. 2011;32 (10):1197–1206.
  44. Schachinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355 (12):1210–1221.
  45. Wollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364 (9429):141–148.
  46. Janssens S, Dubois C, Bogaert J et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised trolled trial. Lancet. 2006; 367 (9505):113–121.
  47. Lunde K, Solheim S, Aakhus S et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355 (12):1199–1209.
  48. Abdel-Latif A, Bolli R, Tleyjeh IM et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med. 2007;167 (10):989–997.
  49. Lipinski MJ, Biondi-Zoccai GG, Abbate A et al. Impact of intraco­ronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol. 2007;50 (18):1761–1767.
  50. Martin-Rendon E, Brunskill SJ, Hyde CJ et al. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J. 2008;29 (15):1807–1818.
  51. Zhang X, Chang A. Molecular predictors of EGFR-TKI sensiti­vity in advanced nonsmall cell lung cancer. Int J Med Sci. 2008;5 (4):209–217.
  52. Dorn GW. 2nd, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest. 2005;115 (3):527–537.
  53. Yano N, Tseng A, Zhao TC et al. Temporally controlled overexpression of cardiacspecific PI3Kfalphag induces enhanced myocardial contractilitya new transgenic model. Am J Physiol Heart Circ Physiol. 2008;295 (4):H1690–1694.
  54. Besler C, Doerries C, Giannotti G et al. Pharmacological approaches to improve endothelial repair mechanisms. Expert Rev Cardiovasc Ther. 2008;6 (8):1071–1082.
  55. Riveiro A, Mosquera A, Alonso M, Calvo C. Angiotensin II type 1 receptor blocker irbesartan ameliorates vascular function in spontaneously hypertensive rats regardless of oestrogen status. J Hypertens. 2002;20 (7):1365–1372.
  56. Potenza MA, Marasciulo FL, Tarquinio M et al. Treatment of spontaneously hypertensive rats with rosiglitazone and / or enalapril restores balance between vasodilator and vasoconstrictor actions of insulin with simultaneous improvement in hyper- tension and insulin resistance. Diabetes. 2006;55 (12):3594–603.
  57. Ghiadoni L, Versari D, Magagna A et al. Ramipril dose-dependently increases nitric oxide availability in the radial artery of essential hypertension patients. J Hypertens. 2007;25 (2):361–366.
  58. Antony I, Lerebours G, Nitenberg A. Angiotensin-converting enzyme inhibition restores flowdependent and cold pressor test-induced dilations in coronary arteries of hypertensive patients. Circulation. 1996;94 (12):3115–3122.
  59. Ghiadoni L, Magagna A, Versari D et al. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension. 2003;41 (6):1281–1286.
  60. Werner N, Kosiol S, Schiegl T et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353 (10):999–1007.
  61. Konishi M, Su C. Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension. 1983;5 (6):881–886.
  62. Bahlmann FH, de Groot K, Mueller O et al. Stimulation of endothelial progenitor cells: a new putative thera- peutic effect of angiotensin II receptor antagonists. Hypertension. 1983;5 (6):881–886.
  63. Yoshida J, Yamamoto K, Mano T et al. AT1 receptor blocker added to ACE inhibitor provides benefits at advanced stage of hypertensive diastolic heart failure. Hypertension. 2004;43 (3):686–691.
  64. You D, Cochain C, Loinard C et al. Hypertension impairs postnatal vasculogenesis: role of antihypertensive agents. Hypertension. 2008;51 (6):1537–1544.
  65. You D, Cochain C, Loinard C et al. Combination of the angiotensin-converting enzyme inhibitor perindopril and the diuretic indapamide activate postnatal vasculogenesis in spontaneously hypertensive rats. J Pharmacol Exp Ther. 2008;325 (3):766–773.
  66. Ebrahimian T. G, Tamarat R, Clergue M et al. Dual effect of angiotensin-converting enzyme inhibition on angiogenesis in type 1 diabetic mice. Arterioscler Thromb Vasc Biol. 2005;25 (1):65–70.
  67. Savarese G, Costanzo P, Cleland JG et al. A meta-analysis reporting effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in patients without heart failure. J Am Coll Cardiol. 2013;61 (2):131–142.
Gilyarevsky S.R., Golshmid M.V., Kuzmina I.M. Circulating endothelial progenitor cells and complications of cardiovascular diseases: Role of angiotensin converting enzyme inhibitors. Russian Heart Journal. 2013;12(5):267-272

To access this material please log in or register

Register Authorize
Ru En