To access this material please log in or register

Register Authorize

Prediction of risk for in-stent coronary restenosis in patients with obesity

Veselovskaya N. G., Chumakova G. A., Ott A. V., Gritsenko O. V., Subbotin E. A.

Keywords: CAD, obesity, restenosis, transcutaneous coronary intervention

DOI: 10.18087/rhj.2013.5.1867

Background. Transcutaneous coronary intervention (TCI) with stent placement is an effective treatment for IHD. However the restenosis incidence ranges from 12 to 40 %. Aim. Evaluating the predictive value of epicardial obesity and metabolic factors for the risk of in-stent coronary restenosis in patients with IHD. Materials and methods. The study included 186 males (age 54.4±9.1 years) with IHD and BMI ≥30 kg / m² (34.23±3.97 kg / m²) in the period of their scheduled preparation for TCI with stent placement. Prospective observation was performed for one year after TCI. Laboratory tests for major and emerging metabolic RFs and echoCG with measurement of epicardial adipose tissue thickness (EATT) were performed for all patients. Coronary restenosis was defined as a luminal narrowing of ≥50 % in the site of intervention. Results. Restenosis was found in 17.3 % (n=32) of cases. As estimated using the logistic regression equation, the most significant set of restenosis predictors with a high rate of correct prediction (81.5 %) included leptin, lipoprotein (a), EATT, glucose, interleukin-6, and HDLP cholesterol. Area under the ROC curve was 0.8150, which indicated a high quality of the obtained mathematical model. Conclusion. The obtained set of predictors allows selecting the most promising and efficient programs of multimodal drug and non-drug preoperative preparation for myocardial revascularization in patients with obesity.
  1. Dogdu O, Yarlioglues M, Kaya MG et al. Long term clinical outcomes of brachytherapy, bare-metal stenting, and drug-eluting stenting for de novo and in-stent restenosis lesions: Five year follow-up. Cardiol J. 2011;18 (6):654–656.
  2. Dangas G, Kuepper F. Re-stenosis: repeat narrowing of a coronary artery: prevention and treatment. Circulation. 2002;105 (22):2586–2587.
  3. Montani JP, Carroll JF, Dwyer TM. Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular di­seases. Int J Obes Relat Metab Disord. 2004;28 (4):58–65.
  4. Iacobellis G, Barbaro G. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res. 2008;40 (7):442–445.
  5. Curcio A, Torella D, Indolf C. Mechanisms of smooth muscle cell proliferation and enothelial regeneration after vascular injury and stenting. Circ J. 2011;75 (6):1287–1296.
  6. Cheng KH, Chu CS, Lee KT et al. Adipocytokines and proinflamatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes (Lond). 2008;32 (2):268–274.
  7. Eiras S, Teijeira-Fernández E, Shamagian LG et al. Extension of coro­nary artery disease is associated with increased IL-6 expression and decreased adiponectin gene expression in epicardial adipose tissue. Cytokine. 2008;43 (2):174–180.
  8. Диагностика и лечение метаболического синдрома. Россий­ские рекомендации (второй пересмотр). Москва, 2009. Кардио­васкулярная терапия и профилактика. 2009;6 (приложение 2):1–28.
  9. Iacobellis G, Willens HJ. Echocardiographic Epicardial Fat: A Review of Research and Clinical Applications. JASE. 2009;22 (12):1311–1319.
  10. Hosmer DWJr, Lemeshow S. Applied logistic regression – 2nd ed. – John Wiley & Sons, Inc. 2000. – 397 pp.
  11. Чумакова Г. А., Веселовская Н. Г., Козаренко А. А. Эпикарди­альное жировое депо: морфология, диагностика, клиническое значение. Сердце. 2011;10 (3):143–147.
  12. Ahn SG, Lim HS, Joe DY. Relationship of epicardial adipose tissue by echocardiography to coronary artery disease. Heart. 2008;94 (3):7–13.
  13. Jeong JW, Jeong MH, Yun KH et al. Echocardiographic epicardial fat thickness and coronary artery disease. Circ J. 2007;71 (4):536–539.
  14. Singh N, Singh H, Khanijoun HK. Echocardiographic Assessment of Epicardial Adipose Tissue – A Marker of Visceral Adiposity. Mcgill J Med. 2007;10 (1):26–30.
  15. Nikaeen F, Pourmoghadas M, Shemirani H. The association between epicardial fat thickness in echocardiography and coronary restenosis in drug eluting stents ARYA. Atheroscler. 2011;7 (1):11–17.
  16. Ichikawa T, Unoki H, Sun H et al. Lipoprotein (a) promotes smooth muscle cell proliferation and dedifferentiation in atherosclerotic lesions of human apo (a) transgenic rabbits. American Journal of Pathology. 2002; 160 (1):227–236.
  17. Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis. Journal of Atherosclerosis and Thrombosis. 2003;10 (2):63–71.
  18. Kamitani T, Taniguchi T, Miyai N. Association between plasma lipoprotein (a) concentration and restenosis after stent implantation. Circ J. 2005; 69 (6):644–649.
  19. Qin SY, Liu J, Jiang HX. Association between baseline lipoprotein (a) levels and restenosis after coronary stenting: Meta-analysis of 9 cohort studies. Atherosclerosis. 2013; 227 (2):360–366.
  20. Chiba T, Shinozaki S, Nakazawa T et al. Leptin deficiency suppresses progression of atherosclerosis in apoE-deficient mice. Atherosclerosis. 2008;196 (1):68–75.
  21. Han SH, Quon MJ, Koh KK. Reciprocal relationships between abnormal metabolic parameters and endothelial dysfunction. Curr Opin Lipidol. 2007;18 (1):58–65.
  22. Piatti P, Di Mario C, Monti LD et al. Association of insulin resistance, hyperleptinemia, and impaired nitric oxide release with in-stent restenosis in patients undergoing coronary stenting. Circulation. 2003;108 (17):2074–2081.
  23. Bienertova-Vasku JA, Hlinomaz O, Vasku A. Are common leptin promoter polymorphisms associated with restenosis after coronary stenting? Heart Vessels. 2007;22 (5):310–315.
  24. Funayama H, Ishikawa SE, Kubo N et al. Close association of regional interleukin-6 levels in the infarct-related culprit coronary artery with restenosis in acute myocardial infarction. Circ J. 2006;70 (4):426–429.
  25. Xia ZY, Yang H, Qu HQ et al. Impact of carotid artery stenting on plasma interleukin-6, tumor necrosis factor-α and C-reactive protein. Int Angiol. 2012;31 (1):28–32.
  26. Lima-Filho MO, Figueiredo GL, Foss-Freitas MC. Predictors of restenosis after percutaneous coronary intervention using bare-metal stents: a comparison between patients with and without dysglycemia. Braz J Med Biol Res. 2010;43 (6):572–579.
Veselovskaya N.G., Chumakova G.A., Ott A.V. et al. Prediction of risk for in-stent coronary restenosis in patients with obesity. Russian Heart Journal. 2013;12(5):305-310

To access this material please log in or register

Register Authorize
Ru En