2017

150.00 rub.
Buy article
2017/№4

Supression of tumorogenicity 2 significance in patients with heart failure decompensation

Protasov V. N.1, Skvortsov A. A.1, Narusov O. Yu.1, Koshkina D. E.2, Tkachev G. A.1, Goryunova T. V.1, Masenko V. P.1, Tereshchenko S. N.1
1 – Russian Cardiology Science and Production Center, 3rd Cherepkovskaya 15a, Moscow 121552, Russia
2 – National Research Center for Preventive Medicine, Petroverigsky Per. 10, Bldg. 3, Moscow 101990, Russia

Keywords: CHF, decompensated heart failure, risk stratification, soluble ST2 receptor

DOI: 10.18087/rhfj.2017.4.2370

Background. Heart failure (HF) is still associated with a high mortality rate. Therefore, searching for new, sensitive markers of prediction and treatment efficacy is relevant. Aim. To evaluate the significance of soluble suppression of tumorigenicity‑2 (sST2) concentration for stratification of risk in patients with decompensated HF during long‑term follow‑up. Materials and methods. This prospective study included 159 patients admitted for clinical signs of decompensated HF. Examination with measurement of N‑terminal prohormone of brain natriuretic peptide (NT‑pro‑BNP) and sST2 was performed on days of admission to and discharge from the hospital. Repeated biomarker measurements were performed at 3, 6 and 12 months of follow‑up. The composite endpoint (CEP) included cardiovascular (CV) death, the first readmission for decompensated HF, HF decompensation requiring intravenous diuretic treatment, and CV death with successful resuscitation. Results. In patients with decompensated HF during hospitalization, sST2 concentrations significantly decreased from 60.5 (41.95; 92.87) ng/ml at admission to 38.43 (24.67; 63.72) ng/ml (Δ%=–30.13% (–42.07%; –17.64%) at discharge from the hospital (p<0.0001). Concentrations of NT‑proBNP also were significantly decreased from 3615.0 (1578.0; 6289.3) pg/ml at baseline to 2165.5 (982.7; 4221.3) pg/ml (Δ%=–38.27% (–49.7%; –24.34%)at discharge from the hospital (p<0.0001). During the year of follow‑up, 56 (35.2%) patients had CET. In total, 78 (49.1%) CV events were observed. Marker concentrations were significantly lower in the group of patients without than with CEP. The ROC analysis showed that the concentrations of NT‑proBNP and particularly sST2 measured at discharge were most sensitive to occurrence of CEP during the one‑year follow‑up after HF decompensation; values of the area under the curve (AUC) were 0.727 [ (95%CI from 0.637 to 0.816), р<0.0001] and 0.772 [ (95% CI from 0.688 to 0.856); р<0.0001], respectively. Patients who did not reach cut‑off values of sST2 ≤37.8 ng/ml had a higher risk of adverse events within one year; HR at 95% CI was 6.755 (from 3.026 to 15.082), p<0.0001. In the multifactorial prediction, addition of the sST2 concentration to a standard clinical biochemical model (CBM) was associated with increasing AUC for both 6 and 12 months follow‑up [(AUC 0.869 (0.803–0.935); p<0.0001 and AUC 0.833 (0.757–0.910); p<0.0001)]. Changes in the sST2 concentration during the stay in the hospital also had an important predictive significance; the area under the ROC curve was 0.696 (95% CI 0.596–0.796); p<0.0001. Patients with an insufficient decrease in the marker concentration (less than –28.4% (Δ%) during the hospital stay) had a higher risk of CEP. “Non‑responders”, patients with an insufficient sST2 decrease (less than –28.4%) during the hospital stay in combination with sST2 ≥37.8 ng/ml at discharge from the hospital, had the highest risk of CV death/repeated HF decompensation. Conclusion. The concentration of sST2 at discharge from the hospital is superior to standard risk factors and NT‑proBNP for evaluation of long‑term prognosis in patients with decompensated HF. Double measuring sST2 in the period of hospitalization (at admission and discharge) considerably enhanced the risk stratification for patients after acute decompensated heart failure. Patients with an insufficient sST2 decrease (less than –28.4%) during stay in the hospital in combination with sST2 ≥37.8 ng/ml at discharge from the hospital, had the highest risk of CV death/repeated HF decompensation.
  1. Writing Group Members, Roger VL, Go AS, Lloyd‑Jones DM, Benjamin EJ, Berry JD et al. Executive Summary: Heart Disease and Stroke Statistics – 2012 Update: A Report From the American Heart Association. Circulation. 2012;125(1):188–97. DOI:10.1161/CIR.0b013e3182456d46.
  2. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC et al. Forecasting the Impact of Heart Failure in the United States: A Policy Statement From the American Heart Association. Circulation: Heart Failure. 2013;6(3):606–19. DOI:10.1161/HHF.0b013e318291329a.
  3. Authors/Task Force Members, Dickstein K, Cohen‑Solal A, Filippatos G, McMurray JJV, Ponikowski P et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). European Heart Journal. 2008;29(19):2388–442. DOI:10.1093/eurheartj/ehn309.
  4. Фомин И. В., Беленков Ю. Н., Мареев В. Ю., Агеев Ф. Т., Бадин Ю. В., Галявич А. С. и др. Распространенность ХСН в Европейской части Российской Федерации – данные ЭПОХА–ХСН. Журнал Сердечная Недостаточность. 2006;7(1):4–7 [Fomin I. V., Belenkov Yu. N., Mareev V. Yu., Ageev F. T., Badin Yu. V., Galyavich A. S. i dr. Rasprostranennost` XSN v Evropejskoj chasti Rossijskoj Federaczii – danny`e E`POXA‑XSN. Zhurnal Serdechnaya Nedostatochnost`. 2006;7(1):4–7].
  5. Blecker S, Paul M, Taksler G, Ogedegbe G, Katz S. Heart failure–associated hospitalizations in the United States. J Am Coll Cardiol. 2013;61(12):1259–67. DOI:10.1016/j.jacc.2012.12.038.
  6. Maggioni AP, Dahlström U, Filippatos G, Chioncel O, Crespo Leiro M, Drozdz J et al. EURObservational Research Programme: regional differences and 1‑year follow‑up results of the Heart Failure Pilot Survey (ESC‑HF Pilot). Eur J Heart Fail. 2013;15(7):808–17. DOI:10.1093/eurjhf/hft050.
  7. Krumholz HM, Merrill AR, Schone EM, Schreiner GC, Chen J, Bradley EH et al. Patterns of Hospital Performance in Acute Myocardial Infarction and Heart Failure 30‑Day Mortality and Readmission. Circulation: Cardiovascular Quality and Outcomes. 2009;2(5):407–13. DOI:10.1161/CIRCOUTCOMES.109.883256.
  8. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD et al. Forecasting the Future of Cardiovascular Disease in the United States: A Policy Statement From the American Heart Association. Circulation. 2011;123(8):933–44. DOI:10.1161/CIR.0b013e31820a55f5.
  9. Writing Group Members, Lloyd‑Jones D, Adams RJ, Brown TM, Carnethon M, Dai S et al. Executive Summary: Heart Disease and Stroke Statistics ‑ 2010 Update: A Report From the American Heart Association. Circulation. 2010;121(7):948–54. DOI:10.1161/CIRCULATIONAHA.109.192666.
  10. Roger VL. Trends in Heart Failure Incidence and Survival in a Community‑Based Population. JAMA. 2004;292(3):344–50. DOI:10.1001/jama.292.3.344.
  11. Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KKL et al. Long‑term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347(18):1397–402. DOI:10.1056/NEJMoa020265.
  12. Harjola V‑P, Follath F, Nieminen MS, Brutsaert D, Dickstein K, Drexler H et al. Characteristics, outcomes, and predictors of mortality at 3 months and 1 year in patients hospitalized for acute heart failure. European Journal of Heart Failure. 2010;12(3):239–48. DOI:10.1093/eurjhf/hfq002.
  13. Maggioni AP, Dahlström U, Filippatos G, Chioncel O, Leiro MC, Drozdz J et al. EURObservational Research Programme: The Heart Failure Pilot Survey (ESC‑HF Pilot). European Journal of Heart Failure. 2010;12(10):1076–84. DOI:10.1093/eurjhf/hfq154.
  14. Bouvy ML, Heerdink ER, Leufkens HGM, Hoes AW. Predicting mortality in patients with heart failure: a pragmatic approach. Heart. 2003;89(6):605–9.
  15. Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113(11):1424–33. DOI:10.1161/CIRCULATIONAHA.105.584102.
  16. Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJV, Swedberg KB et al. Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J. 2006;27(1):65–75. DOI:10.1093/eurheartj/ehi555.
  17. Терещенко С. Н., Жиров И. В., Нарусов О. Ю., Мареев Ю. В., Затейщиков Д. А., Осмоловская Ю. Ф. и др. Диагностика и лечению хронической и острой сердечной недостаточности. Кардиологический вестник. 2016;XI(2):3–33 [Tereshhenko S. N., Zhirov I. V., Narusov O. Yu., Mareev Yu. V., Zatejshhikov D. A., Osmolovskaya Yu. F. i dr. Diagnostika i lecheniyu xronicheskoj i ostroj serdechnoj nedostatochnosti. Kardiologicheskij vestnik. 2016;XI(2):3–33].
  18. Мареев В. Ю., Агеев Ф. Т., Арутюнов Г. П., Коротеев А. В., Мареев Ю. В., Овчинников А. Г. и др. Национальные рекомендации ОССН, РКО и РНМОТ по диагностике и лечению ХСН (четвертый пересмотр). Утверждены на Конгрессе ОССН 7 декабря 2012 года, на Правлении ОССН 31 марта 2013 и Конгрессе РКО 25 сентября 2013 года. Журнал Сердечная Недостаточность. 2013;14(7):379–472. DOI:10.18087/rhfj.2013.7.1860 [Mareev V. Yu., Ageev F. T., Arutyunov G. P., Koroteev A. V., Mareev Yu. V., Ovchinnikov A. G. i dr. Naczional`ny`e rekomendaczii OSSN, RKO i RNMOT po diagnostike i lecheniyu XSN (chetverty`j peresmotr). Utverzhdeny` na Kongresse OSSN 7 dekabrya 2012 goda, na Pravlenii OSSN 31 marta 2013 i Kongresse RKO 25 sentyabrya 2013 goda. Zhurnal Serdechnaya Nedostatochnost`. 2013;14(7):379–472. DOI:10.18087/rhfj.2013.7.1860].
  19. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure. Journal of the American College of Cardiology. 2013;62(16):e147–239. DOI:10.1016/j.jacc.2013.05.019.
  20. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal. 2016;37(27):2129–200. DOI:10.1093/eurheartj/ehw128.
  21. Januzzi JL. NT‑proBNP testing for diagnosis and short‑term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: The International Collaborative of NT‑proBNP Study. European Heart Journal. 2005;27(3):330–7. DOI:10.1093/eurheartj/ehi631.
  22. Luchner A, Behrens G, Stritzke J, Markus M, Stark K, Peters A et al. Long‑term pattern of brain natriuretic peptide and N‑terminal pro-brain natriuretic peptide and its determinants in the general population: contribution of age, gender, and cardiac and extracardiac factors. European Journal of Heart Failure. 2013;15(8):859–67. DOI:10.1093/eurjhf/hft048.
  23. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Wilson PWF et al. Impact of obesity on plasma natriuretic peptide levels. Circulation. 2004;109(5):594–600. DOI:10.1161/01.CIR.0000112582.16683.EA.
  24. Anwaruddin S, Lloyd‑Jones DM, Baggish A, Chen A, Krauser D, Tung R et al. Renal Function, Congestive Heart Failure, and Amino‑Terminal Pro‑Brain Natriuretic Peptide Measurement. Journal of the American College of Cardiology. 2006;47(1):91–7. DOI:10.1016/j.jacc.2005.08.051.
  25. Wu AHB, Smith A, Wieczorek S, Mather JF, Duncan B, White CM et al. Biological variation for N‑terminal pro‑and B‑type natriuretic peptides and implications for therapeutic monitoring of patients with congestive heart failure. Am J Cardiol. 2003;92(5):628–31.
  26. Tominaga S. A putative protein of a growth specific cDNA from BALB/c‑3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS Lett. 1989;258(2):301–4.
  27. Klemenz R, Hoffmann S, Werenskiold AK. Serum‑and onco‑protein‑mediated induction of a gene with sequence similarity to the gene encoding carcinoembryonic antigen. Proc Natl Acad Sci USA. 1989;86(15):5708–12.
  28. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK et al. IL‑33, an Interleukin‑1‑like Cytokine that Signals via the IL‑1 Receptor‑Related Protein ST2 and Induces T Helper Type 2‑Associated Cytokines. Immunity. 2005;23(5):479–90. DOI:10.1016/j.immuni.2005.09.015.
  29. Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga S, Solomon SD et al. Expression and regulation of ST2, an interleukin‑1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106(23):2961–6.
  30. Chackerian AA, Oldham ER, Murphy EE, Schmitz J, Pflanz S, Kastelein RA. IL‑1 receptor accessory protein and ST2 comprise the IL‑33 receptor complex. J Immunol. 2007;179(4):2551–5.
  31. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie ANJ, Lee RT. IL‑33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. Journal of Clinical Investigation. 2007;117(6):1538–49. DOI:10.1172/JCI30634.
  32. Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P et al. High‑Sensitivity ST2 for Prediction of Adverse Outcomes in Chronic Heart Failure. Circulation: Heart Failure. 2011;4(2):180–7. DOI:10.1161/CIRCHEARTFAILURE.110.958223.
  33. Bayes‑Genis A, de Antonio M, Vila J, Peñafiel J, Galán A, Barallat J et al. Head‑to‑Head Comparison of 2 Myocardial Fibrosis Biomarkers for Long‑Term Heart Failure Risk Stratification. Journal of the American College of Cardiology. 2014;63(2):158–66. DOI:10.1016/j.jacc.2013.07.087.
  34. Pascual‑Figal DA, Ordoñez‑Llanos J, Tornel PL, Vázquez R , Puig T, Valdés M et al. Soluble ST2 for Predicting Sudden Cardiac Death in Patients With Chronic Heart Failure and Left Ventricular Systolic Dysfunction. Journal of the American College of Cardiology. 2009;54(23):2174–9. DOI:10.1016/j.jacc.2009.07.041.
  35. Felker GM, Fiuzat M, Thompson V, Shaw LK, Neely ML, Adams KF et al. Soluble ST2 in Ambulatory Patients With Heart Failure: Association With Functional Capacity and Long‑Term Outcomes. Circulation: Heart Failure. 2013;6(6):1172–9. DOI:10.1161/CIRCHEARTFAILURE.113.000207.
  36. Bayes‑Genis A, de Antonio M, Galán A, Sanz H, Urrutia A, Cabanes R et al. Combined use of high‑sensitivity ST2 and NTproBNP to improve the prediction of death in heart failure. European Journal of Heart Failure. 2012;14(1):32–8. DOI:10.1093/eurjhf/hfr156.
  37. Broch K, Ueland T, Nymo SH, Kjekshus J, Hulthe J, Muntendam P et al. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. European Journal of Heart Failure. 2012;14(3):268–77. DOI:10.1093/eurjhf/hfs006.
  38. Anand IS, Rector TS, Kuskowski M, Snider J, Cohn JN. Prognostic Value of Soluble ST2 in the Valsartan Heart Failure Trial. Circulation: Heart Failure. 2014;7(3):418–26. DOI:10.1161/CIRCHEARTFAILURE.113.001036.
  39. Mueller T, Zimmermann M, Dieplinger B, Ankersmit HJ, Haltmayer M. Comparison of plasma concentrations of soluble ST2 measured by three different commercially available assays: The MBL ST2 assay, the Presage ST2 assay, and the R&D ST2 assay. Clinica Chimica Acta. 2012;413(19–20):1493–4. DOI:10.1016/j.cca.2012.06.021.
  40. Gruson D, Lepoutre T, Ahn SA, Rousseau MF. Increased soluble ST2 is a stronger predictor of long‑term cardiovascular death than natriuretic peptides in heart failure patients with reduced ejection fraction. International Journal of Cardiology. 2014;172(1):e250–2. DOI:10.1016/j.ijcard.2013.12.101.
  41. Lassus J, Gayat E, Mueller C, Peacock WF, Spinar J, Harjola V‑P et al. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: The Multinational Observational Cohort on Acute Heart Failure (MOCA) study. International Journal of Cardiology. 2013;168(3):2186–94. DOI:10.1016/j.ijcard.2013.01.228.
  42. Rehman SU, Mueller T, Januzzi JL. Characteristics of the Novel Interleukin Family Biomarker ST2 in Patients With Acute Heart Failure. Journal of the American College of Cardiology. 2008;52(18):1458–65. DOI:10.1016/j.jacc.2008.07.042.
  43. Dieplinger B, Januzzi JL, Steinmair M, Gabriel C, Poelz W, Haltmayer M et al. Analytical and clinical evaluation of a novel high‑sensitivity assay for measurement of soluble ST2 in human plasma – The PresageTM ST2 assay. Clinica Chimica Acta. 2009;409(1–2):33–40. DOI:10.1016/j.cca.2009.08.010.
  44. Januzzi JL, Mebazaa A, Di Somma S. ST2 and Prognosis in Acutely Decompensated Heart Failure: The International ST2 Consensus Panel. The American Journal of Cardiology. 2015;115(7):26B–31B. DOI:10.1016/j.amjcard.2015.01.037.
  45. Wu AHB, Wians F, Jaffe A. Biological variation of galectin‑3 and soluble ST2 for chronic heart failure: Implication on interpretation of test results. American Heart Journal. 2013;165(6):995–9. DOI:10.1016/j.ahj.2013.02.029.
  46. Boisot S, Beede J, Isakson S, Chiu A, Clopton P, Januzzi J et al. Serial Sampling of ST2 Predicts 90‑Day Mortality Following Destabilized Heart Failure. Journal of Cardiac Failure. 2008;14(9):732–8. DOI:10.1016/j.cardfail.2008.06.415.
Protasov V. N., Skvortsov A. A., Narusov O. Yu., Koshkina D. E., Tkachev G. A., Goryunova T. V. et al. Supression of tumorogenicity 2 significance in patients with heart failure decompensation. Russian Heart Failure Journal. 2017;18(4):279–289

To access this material please log in or register

Register Authorize
Ru En