2017

150.00 rub.
Buy article
2017/№3

Clinical efficacy of dual inhibitor of neprilisin and AT1‑angiotensin receptors LCZ696 (sakubitril/valsartan) in chronic heart failure patients with impaired renal function

Kuzmin O. B., Zhezha V. V., Belyanin V. V., Buchneva N. V., Landar' L. N., Serdyuk S. V.
Federal State Budgetary Educational Institution of Higher Education, "Orenburg State Medical University" of the Ministry of Health of the Russian Federation, Sovetskaya 6, Orenburg 460000

Keywords: CHF, LCZ696 (sacubitril/valsartan), kidneys function

DOI: 10.18087/rhfj.2017.3.2332

The review presents data on the participation of natriuretic peptides in the neurohormonal mechanism preventing damage to the heart and kidney in patients with CHF and the results obtained in evaluation of LCZ696 (sacubitril/valsartan) clinical efficacy in this patients population, including those with impaired renal function
  1. Wang D, Gladysheva IP, Fan T-HM, Sullivan R, Houng AK, Reed GL. Atrial Natriuretic Peptide Affects Cardiac Remodeling, Function, Heart Failure, and Survival in a Mouse Model of Dilated Cardiomyopathy. Hypertension. 2014;63(3):514–9. DOI:10.1161/HYPERTENSIONAHA.113.02164.
  2. Kuhn M. Cardiac Actions of Atrial Natriuretic Peptide: New Visions of an Old Friend. Circulation Research. 2015;116(8):1278–80. DOI:10.1161/CIRCRESAHA.115.306325.
  3. Yoshihara F, Tokudome T, Kishimoto I, Otani K, Kuwabara A, Horio T et al. Aggravated renal tubular damage and interstitial fibrosis in mice lacking guanylyl cyclase-A (GC-A), a receptor for atrial and B-type natriuretic peptides. Clinical and Experimental Nephrology. 2015;19(2):197–207. DOI:10.1007/s10157-014-0982-1.
  4. Bodey F, Hopper I, Krum H. Neprilysin inhibitors preserve renal function in heart failure. International Journal of Cardiology. 2015;179:329–30. DOI:10.1016/j.ijcard.2014.11.059.
  5. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. DOI:10.1056/NEJMoa1409077.
  6. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. The Lancet. 2012;380(9851):1387–95. DOI:10.1016/S0140-6736(12)61227-6.
  7. Jhund PS, Claggett B, Packer M, Zile MR , Voors AA, Pieske B et al. Independence of the blood pressure lowering effect and efficacy of the angiotensin receptor neprilysin inhibitor, LCZ696, in patients with heart failure with preserved ejection fraction: an analysis of the PARAMOUNT trial: LCZ696 and blood pressure in HFpEF. European Journal of Heart Failure. 2014;16(6):671–7. DOI:10.1002/ejhf.76.8.
  8. Zile MR , Jhund PS, Baicu CF, Claggett BL, Pieske B, Voors AA et al. Plasma Biomarkers Reflecting Profibrotic Processes in Heart Failure With a Preserved Ejection FractionCLINICAL PERSPECTIVE: Data From the Prospective Comparison of ARNI With ARB on Management of Heart Failure With Preserved Ejection Fraction Study. Circulation: Heart Failure. 2016;9(1):e002551. DOI:10.1161/CIRCHEARTFAILURE.115.002551.
  9. Roques BP, Noble F, Daugé V, Fournié-Zaluski MC, Beaumont A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev. 1993;45(1):87–146.
  10. Skidgel RA. Bradykinin-degrading enzymes: structure, function, distribution, and potential roles in cardiovascular pharmacology. J Cardiovasc Pharmacol. 1992;20 Suppl 9:S4-9.
  11. Potter LR . Natriuretic peptide metabolism, clearance and degradation: Natriuretic peptide metabolism. FEBS Journal. 2011;278(11):1808–17. DOI:10.1111/j.1742-4658.2011.08082.x.
  12. Kerkelä R , Ulvila J, Magga J. Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events. Journal of the American Heart Association. 2015;4(10):e002423. DOI:10.1161/JAHA.115.002423.
  13. Semenov AG, Tamm NN, Seferian KR , Postnikov AB, Karpova NS, Serebryanaya DV et al. Processing of Pro-B-Type Natriuretic Peptide: Furin and Corin as Candidate Convertases. Clinical Chemistry. 2010;56(7):1166–76. DOI:10.1373/clinchem.2010.143883.
  14. Buckley MG, Sethi D, Markandu ND, Sagnella GA, Singer DRJ, MacGregor GA. Plasma concentrations and comparisons of brain natriuretic peptide and atrial natriuretic peptide in normal subjects, cardiac transplant recipients and patients with dialysis-independent or dialysis-dependent chronic renal failure. Clinical Science. 1992;83(4):437–44. DOI:10.1042/cs0830437.
  15. Clerico A, Iervasi G, Del Chicca MG, Emdin M, Maffei S, Nannipieri M et al. Circulating levels of cardiac natriuretic peptides (ANP and BNP) measured by highly sensitive and specific immuno-radiometric assays in normal subjects and in patients with different degrees of heart failure. Journal of Endocrinological Investigation. 1998;21(3):170–9. DOI:10.1007/BF03347297.
  16. Menezes Falcão L, Pinto F, Ravara L, van Zwieten PA. BNP and ANP as diagnostic and predictive markers in heart failure with left ventricular systolic dysfunction. Journal of the Renin-Angiotensin-Aldosterone System. 2004;5(3):121–9. DOI:10.3317/jraas.2004.028.
  17. Leask A. Potential Therapeutic Targets for Cardiac Fibrosis: TGF, Angiotensin, Endothelin, CCN2, and PDGF, Partners in Fibroblast Activation. Circulation Research. 2010;106(11):1675–80. DOI:10.1161/CIRCRESAHA.110.217737.
  18. Szabó Z, Magga J, Alakoski T, Ulvila J, Piuhola J, Vainio L et al. Connective tissue growth factor inhibition attenuates left ventricular remodeling and dysfunction in pressure overload-induced heart failure. Hypertension. 2014;63(6):1235–40. DOI:10.1161/HYPERTENSIONAHA.114.03279.
  19. Kapoun AM. B-Type Natriuretic Peptide Exerts Broad Functional Opposition to Transforming Growth Factor – in Primary Human Cardiac Fibroblasts: Fibrosis, Myofibroblast Conversion, Proliferation, and Inflammation. Circulation Research. 2004;94(4):453–61. DOI:10.1161/01.RES.0000117070.86556.9F.
  20. Li P, Wang D, Lucas J, Oparil S, Xing D, Cao X et al. Atrial Natriuretic Peptide Inhibits Transforming Growth Factor - Induced Smad Signaling and Myofibroblast Transformation in Mouse Cardiac Fibroblasts. Circulation Research. 2008;102(2):185–92. DOI:10.1161/CIRCRESAHA.107.157677.
  21. Buxton ILO, Duan D. Cyclic GMP/Protein Kinase G Phosphorylation of Smad3 Blocks Transforming Growth Factor – Induced Nuclear Smad Translocation: A Key Antifibrogenic Mechanism of Atrial Natriuretic Peptide. Circulation Research. 2008;102(2):151–3. DOI:10.1161/CIRCRESAHA.107.170217.
  22. Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. Journal of Clinical Investigation. 1998;101(4):812–8. DOI:10.1172/JCI119883.
  23. Klaiber M, Kruse M, Völker K, Schröter J, Feil R , Freichel M et al. Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2. Basic Research in Cardiology. 2010;105(5):583–95. DOI:10.1007/s00395-010-0098-z.
  24. Nakagawa H, Oberwinkler H, Nikolaev VO, Gassner B, Umbenhauer S, Wagner H et al. Atrial Natriuretic Peptide Locally Counteracts the Deleterious Effects of Cardiomyocyte Mineralocorticoid Receptor Activation. Circulation: Heart Failure. 2014;7(5):814–21. DOI:10.1161/CIRCHEARTFAILURE.113.000885.
  25. Theilig F, Wu Q. ANP-induced signaling cascade and its implications in renal pathophysiology. American Journal of Physiology –Renal Physiology. 2015;308(10):F1047–55. DOI:10.1152/ajpre-nal.00164.2014.
  26. Dong L, Wang H, Dong N, Zhang C, Xue B, Wu Q. Localization of corin and atrial natriuretic peptide expression in human renal segments. Clinical Science. 2016;130(18):1655–64. DOI:10.1042/CS20160398.
  27. Staffel J, Valletta D, Federlein A, Ehm K, Volkmann R , Füchsl AM et al. Natriuretic Peptide Receptor Guanylyl Cyclase-A in Podocytes is Renoprotective but Dispensable for Physiologic Renal Function. J Am Soc Nephrol. 2017;28(1):260–77. DOI:10.1681/ASN.2015070731.
  28. Eiskjaer H, Nielsen CB, Sorensen SS, Pedersen EB. Renal and hormonal actions of atrial natriuretic peptide during angiotensin II or noradrenaline infusion in man. European Journal of Clinical Investigation. 1996;26(7):584–95. DOI:10.1046/j.1365-2362.1996.00180.x.
  29. Marin-Grez M, Fleming JT, Steinhausen M. Atrial natriuretic peptide causes preglomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature. 1986;324(6096):473–6. DOI:10.1038/324473a0.
  30. Nishikimi T, Inaba-Iemura C, Ishimura K, Tadokoro K, Koshikawa S, Ishikawa K et al. Natriuretic peptide/natriuretic peptide receptor-A (NPR-A) system has inhibitory effects in renal fibrosis in mice. Regulatory Peptides. 2009;154(1–3):44–53. DOI:10.1016/j.regpep.2009.02.006.
  31. Ogawa Y, Mukoyama M, Yokoi H, Kasahara M, Mori K, Kato Y et al. Natriuretic Peptide Receptor Guanylyl Cyclase-A Protects Podocytes from Aldosterone-Induced Glomerular Injury. Journal of the American Society of Nephrology. 2012;23(7):1198–209. DOI:10.1681/ASN.2011100985.
  32. Кузьмин О. Б., Жежа В. В., Белянин В. В., Ландарь Л. Н. Гломерулярная гипертензия: молекулярные механизмы повреждения подоцитов и мезангиальных клеток. Нефрология. 2016;20(4):31–9 [Kuz`min O. B., Zhezha V. V., Belyanin V. V., Landar` L. N. Glomerulyarnaya gipertenziya: molekulyarny`e mexanizmy` povrezhdeniya podoczitov i mezangial`ny`x kletok. Nefrologiya. 2016;20(4):31–9].
  33. Westheim AS, Bostrøm P, Christensen CC, Parikka H, Rykke EO, Toivonen L. Hemodynamic and neuroendocrine effects for candoxatril and frusemide in mild stable chronic heart failure. Journal of the American College of Cardiology. 1999;34(6):1794–801. DOI:10.1016/S0735-1097(99)00435-0.
  34. Kentsch M, Otter W, Drummer C, Nötges A, Gerzer R , Müller-Esch G. Neutral endopeptidase 24.11 inhibition may not exhibit beneficial haemodynamic effects in patients with congestive heart failure. European Journal of Clinical Pharmacology. 1996;51(3–4):269–72. DOI:10.1007/s002280050196.
  35. Packer M, Califf RM, Konstam MA, Krum H, McMurray JJ, Rouleau J-L et al. Comparison of Omapatrilat and Enalapril in Patients With Chronic Heart Failure: The Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation. 2002;106(8):920–6. DOI:10.1161/01.CIR.0000029801.86489.50.
  36. Kostis J. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. American Journal of Hypertension. 2004;17(2):103–11. DOI:10.1016/j.amjhyper.2003.09.014.
  37. Gu J, Noe A, Chandra P, Al-Fayoumi S, Ligueros-Saylan M, Sarangapani R et al. Pharmacokinetics and Pharmacodynamics of LCZ696, a Novel Dual-Acting Angiotensin Receptor-Neprilysin Inhibitor (ARNi). The Journal of Clinical Pharmacology. 2010;50(4):401–14. DOI:10.1177/0091270009343932.
  38. Hegde LG, Yu C, Renner T, Thibodeaux H, Armstrong SR , Park T et al. Concomitant angiotensin AT1 receptor antagonism and neprilysin inhibition produces omapatrilat-like antihypertensive effects without promoting tracheal plasma extravasation in the rat. J Cardiovasc Pharmacol. 2011;57(4):495–504. DOI:10.1097/FJC.0b013e318210fc7e.
  39. Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clinical Science. 2015;130(2):57–77. DOI:10.1042/CS20150469.
  40. Desai AS, McMurray JJV, Packer M, Swedberg K, Rouleau JL, Chen F et al. Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. European Heart Journal. 2015;36(30):1990–7. DOI:10.1093/eurheartj/ehv186.
  41. Packer M, McMurray JJV, Desai AS, Gong J, Lefkowitz MP, Rizkala AR et al. Angiotensin Receptor Neprilysin Inhibition Compared With Enalapril on the Risk of Clinical Progression in Surviving Patients With Heart Failure. Circulation. 2015;131(1):54–61. DOI:10.1161/CIRCULATIONAHA.114.013748.
  42. Jhund PS, Fu M, Bayram E, Chen C-H, Negrusz-Kawecka M, Rosenthal A et al. Efficacy and safety of LCZ696 (sacubitril-valsartan) according to age: insights from PARADIGM-HF. European Heart Journal. 2015;36(38):2576–84. DOI:10.1093/eurheartj/ehv330.
  43. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the spec. European Journal of Heart Failure. 2016;18(8):891–975. DOI:10.1002/ejhf.592.
  44. Voors AA, Gori M, Liu LCY, Claggett B, Zile MR, Pieske B et al. Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction: Renal effects of neprilysin inhibitor LCZ696 in patients with HFpEF. European Journal of Heart Failure. 2015;17(5):510–7. DOI:10.1002/ejhf.232.
  45. Left Atrium in Heart Failure With Preserved Ejection Fraction: Structure, Function, and Significance.
Kuzmin O. B., Zhezha V. V., Belyanin V. V., Buchneva N. V., Landar’ L. N., Serdyuk S. V. Clinical efficacy of dual inhibitor of neprilisin and AT1‑angiotensin receptors LCZ696 (sakubitril/valsartan) in chronic heart failure patients with impaired renal function. Russian Heart Failure Journal. 2017;18(3):233–240

To access this material please log in or register

Register Authorize
Ru En