To access this material please log in or register

Register Authorize

Cell therapy for dilated cardiomyopathy: State-of-the-art

Safiullina A. A., Uskach T. M., Tereshchenko S. N., Zhirov I. V.
Federal State Budgetary Institution, "Russian Cardiology Science and Production Center" of the Ministry of Health of the Russian Federation, 3rd Cherepkovskaya 15a, Moscow 121552

Keywords: dilated cardiomyopathy, stem cell, cell therapy, heart failure

DOI: 10.18087/rhfj.2017.3.2330

Dilated cardiomyopathy is currently defined by the presence of left ventricular (LV) or biventricular dilatation and systolic dysfunction in the absence of abnormal loading conditions (hypertension, valve disease) or coronary artery disease sufficient to cause global systolic impairment. Regardless of all of the advances in medical, pharmacological and surgical procedures, the fate of patients with dilated cardiomyopathy is linked to arrhythmic episodes, severe congestive heart failure and an increased risk of sudden cardiac death. In this review, we will summarize present data on the use of cell therapies in animal models of dilated cardiomyopathies and will discuss the few clinical trials that have been published so far involving patients affected by this disease.
  1. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation. 1996;93(5):841–2. DOI:10.1161/01.CIR.93.5.841.
  2. Dec GW. Introduction to Clinical Myocarditis. In: Myocarditis. ‑ New Jersey: Humana Press; 2002. p. 257–81.
  3. Maron BJ. Contemporary Definitions and Classification of the Cardiomyopathies: An American Heart Association Scientific Statement From the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807–16. DOI:10.1161/CIRCULATIONAHA.106.174287.
  4. Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ, Clunie S et al. Incidence, Causes, and Outcomes of Dilated Cardiomyopathy in Children. JAMA. 2006;296(15):1867. DOI:10.1001/jama.296.15.1867.
  5. Jefferies JL, Towbin JA. Dilated cardiomyopathy. The Lancet. 2010;375(9716):752–62. DOI:10.1016/S0140‑6736(09)62023‑7.
  6. Cleland JGF, Swedberg K, Follath F, Komajda M, Cohen‑Solal A, Aguilar JC et al. The EuroHeart Failure survey programme – a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis. Eur Heart J. 2003;24(5):442–63.
  7. Фомин И. В. Эпидемиология хронической сердечной недостаточности в Российской Федерации. Хроническая сердечная недостаточность. –М.: ГЭОТАР‑Медиа; 2010. с. 7–77 [Fomin I. V. E`pidemiologiya xronicheskoj serdechnoj nedostatochnosti v Rossijskoj Federaczii. Xronicheskaya serdechnaya nedostatochnost`. –M.: GE`OTAR‑Media; 2010. s. 7–77].
  8. Grogan M, Redfield MM, Bailey KR , Reeder GS, Gersh BJ, Edwards WD et al. Long‑term outcome of patients with biopsy‑proved myocarditis: comparison with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1995;26(1):80–4.
  9. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the spec. European Journal of Heart Failure. 2016;18(8):891–975. DOI:10.1002/ejhf.592.
  10. Мареев В. Ю., Агеев Ф. Т., Арутюнов Г. П., Коротеев А. В., Ревишвили А. Ш. Национальные рекомендации ВНОК и ОССН по диагностике и лечению ХСН (третий пересмотр). Журнал Сердечная Недостаточность. 2009;10(2):64–106 [Mareev V. Yu., Ageev F. T., Arutyunov G. P., Koroteev A. V., Revishvili A. Sh. Naczional`ny`e rekomendaczii VNOK I OSSN po diagnostike i lecheniyu XSN (tretij peresmotr). Zhurnal Serdechnaya Nedostatochnost`. 2009;10(2):64–106].
  11. Stehlik J, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dipchand AI et al. The Registry of the International Society for Heart and Lung Transplantation: 29th Official Adult Heart Transplant Report ‑ 2012. The Journal of Heart and Lung Transplantation. 2012;31(10):1052–64. DOI:10.1016/j.healun.2012.08.002.
  12. Chen M, Fan Z, Liu X, Deng J, Zhang L, Rao L et al. Effects of autologous stem cell transplantation on ventricular electrophysiology in doxorubicin‑induced heart failure. Cell Biology International. 2006;30(7):576–82. DOI:10.1016/j.cellbi.2006.03.002.
  13. Nagaya N. Transplantation of Mesenchymal Stem Cells Improves Cardiac Function in a Rat Model of Dilated Cardiomyopathy. Circulation. 2005;112(8):1128–35. DOI:10.1161/CIRCULATIONAHA.104.500447.
  14. Sun C‑K, Chang L‑T, Sheu J‑J, Chiang C‑H, Lee F‑Y, Wu C‑J et al. Bone marrow–derived mononuclear cell therapy alleviates left ventricular remodeling and improves heart function in rat‑dilated cardiomyopathy*: Critical Care Medicine. 2009;37(4):1197–205. DOI:10.1097/CCM.0b013e31819c0667.
  15. Chiu RC‑J, Zibaitis A, Kao RL. Cellular cardiomyoplasty: Myocardial regeneration with satellite cell implantation. The Annals of Thoracic Surgery. 1995;60(1):12–8. DOI:10.1016/S0003‑4975(95)00374‑6.
  16. Li R‑K, Jia Z‑Q, Weisel RD, Mickle DAG, Zhang J, Mohabeer MK et al. Cardiomyocyte Transplantation Improves Heart Function. The Annals of Thoracic Surgery. 1996;62(3):654–61. DOI:10.1016/S0003‑4975(96)00389‑X.
  17. Li R‑K, Jia Z‑Q, Weisel RD, Merante F, Mickle DAG. Smooth Muscle Cell Transplantation into Myocardial Scar Tissue Improves Heart Function. Journal of Molecular and Cellular Cardiology. 1999;31(3):513–22. DOI:10.1006/jmcc.1998.0882.
  18. Taylor DA, Atkins BZ, Hungspreugs P, Jones TR , Reedy MC, Hutcheson KA et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med. 1998;4(8):929–33.
  19. Watanabe E. Cardiomyocyte Transplantation in a Porcine Myocardial Infarction Model. Cell Transplantation. 1998;7(3):239–46. DOI:10.1016/S0963‑6897(98)00011‑6.
  20. Scorsin M, Hagege AA, Dolizy I, Marotte F, Mirochnik N, Copin H et al. Can cellular transplantation improve function in doxorubicin‑induced heart failure? Circulation. 1998;98(19 Suppl):II151‑155; discussion II155‑156.
  21. Yoo K‑J, Li R‑K, Weisel RD, Mickle DAG, Jia Z‑Q, Kim E‑J et al. Heart Cell Transplantation Improves Heart Function in Dilated Cardiomyopathic Hamsters. Circulation. 2000;102 (Supplement 3):III‑204‑III‑209. DOI:10.1161/01.CIR.102.sup‑pl_3.III‑204.
  22. Pouly J. Does the Functional Efficacy of Skeletal Myoblast Transplantation Extend to Nonischemic Cardiomyopathy? Circulation. 2004;110(12):1626–31. DOI:10.1161/01.CIR.0000142861.55862.15.
  23. Suzuki K, Murtuza B, Suzuki N, Smolenski RT, Yacoub MH. Intracoronary Infusion of Skeletal Myoblasts Improves Cardiac Function in Doxorubicin‑Induced Heart Failure. Circulation. 2001;104(suppl 1):I‑213‑I‑217. DOI:10.1161/hc37t1.094929.
  24. Hata H, Matsumiya G, Miyagawa S, Kondoh H, Kawaguchi N, Matsuura N et al. Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing‑induced canine heart failure model. The Journal of Thoracic and Cardiovascular Surgery. 2006;132(4):918–24. DOI:10.1016/j.jtcvs.2006.01.024.
  25. Fuchs S, Baffour R , Zhou YF, Shou M, Pierre A, Tio FO et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. Journal of the American College of Cardiology. 2001;37(6):1726–32. DOI:10.1016/S0735‑1097(01)01200‑1.
  26. Lezaic L, Socan A, Poglajen G, Peitl PK, Sever M, Cukjati M et al. Intracoronary Transplantation of CD34+ Cells Is Associated With Improved Myocardial Perfusion in Patients With Nonischemic Dilated Cardiomyopathy. Journal of Cardiac Failure. 2015;21(2):145–52. DOI:10.1016/j.cardfail.2014.11.005.
  27. Vrtovec B, Poglajen G, Lezaic L, Sever M, Domanovic D, Cernelc P et al. Effects of Intracoronary CD34+ Stem Cell Transplantation in Nonischemic Dilated Cardiomyopathy Patients: 5‑Year Follow‑Up. Circulation Research. 2013;112(1):165–73. DOI:10.1161/CIRCRESAHA.112.276519.
  28. Vrtovec B, Poglajen G, Lezaic L, Sever M, Socan A, Domanovic D et al. Comparison of Transendocardial and Intracoronary CD34+ Cell Transplantation in Patients With Nonischemic Dilated Cardiomyopathy. Circulation. 2013;128(11_suppl_1):S42–9. DOI:10.1161/CIRCULATIONAHA.112.000230.
  29. Seth S, Bhargava B, Narang R , Ray R , Mohanty S, Gulati G et al. The ABCD (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) Trial. Journal of the American College of Cardiology. 2010;55(15):1643–4. DOI:10.1016/j.jacc.2009.11.070.
  30. Hamshere S, Arnous S, Choudhury T, Choudry F, Mozid A, Yeo C et al. Randomized trial of combination cytokine and adult autologous bone marrow progenitor cell administration in patients with non‑ischaemic dilated cardiomyopathy: the REGENERATE‑DCM clinical trial. European Heart Journal. 2015;36(44):3061–9. DOI:10.1093/eurheartj/ehv390.
  31. Martino H, Brofman P, Greco O, Bueno R , Bodanese L, Clausell N et al. Multicentre, randomized, double‑blind trial of intra‑coronary autologous mononuclear bone marrow cell injection in non‑ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the MiHeart study). European Heart Journal. 2015;36(42):2898.2‑2904. DOI:10.1093/eurheartj/ehv477.
  32. Henry TD, Traverse JH, Hammon BL, East CA, Bruckner B, Remmers AE et al. Safety and Efficacy of Ixmyelocel‑T: An Expanded, Autologous Multi‑Cellular Therapy, in Dilated Cardiomyopathy. Circulation Research. 2014;115(8):730–7. DOI:10.1161/CIRCRESAHA.115.304554.
  33. van Weel V, van Tongeren R B, van Hinsbergh V W M, van Bockel JH, Quax PH A. Vascular Growth in Ischemic Limbs: A Review of Mechanisms and Possible Therapeutic Stimulation. Annals of Vascular Surgery. 2008;22(4):582–97. DOI:10.1016/j.avsg.20 08.02 .017.
  34. Shireman PK. The chemokine system in arteriogenesis and hind limb ischemia. Journal of Vascular Surgery. 2007;45(6):A48–56. DOI:10.1016/j.jvs.2007.02.030.
  35. Bartel RL, Cramer C, Ledford K, Longcore A, Parrish C, Stern T et al. The Aastrom experience. Stem Cell Research & Therapy. 2012;3(4):26. DOI:10.1186/scrt117.
  36. Hare JM, DiFede DL, Rieger AC, Florea V, Landin AM, El‑Khorazaty J et al. Randomized Comparison of Allogeneic Versus Autologous Mesenchymal Stem Cells for Nonischemic Dilated Cardiomyopathy. Journal of the American College of Cardiology. 2017;69(5):526–37. DOI:10.1016/j.jacc.2016.11.009.
  37. Mushtaq M, DiFede DL, Golpanian S, Khan A, Gomes SA, Mendizabal A et al. Rationale and Design of the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy (The POSEIDON‑DCM Study): A phase I/II, Randomized Pilot Study of the Comparative Safety and Efficacy of Transendocardial Injection of Autologous Mesenchymal Stem Cell vs. Allogeneic Mesenchymal Stem Cells in Patients with Non‑ischemic Dilated Cardiomyopathy. Journal of Cardiovascular Translational Research. 2014;7(9):769–80. DOI:10.1007/s12265‑014‑9594‑0.
  38. Pesce M. Myoendothelial Differentiation of Human Umbilical Cord Blood‑Derived Stem Cells in Ischemic Limb Tissues. Circulation Research. 2003;93(5):51e–62. DOI:10.1161/01.RES.0000090624.04507.45.
  39. Murohara T. Therapeutic Vasculogenesis Using Human Cord Blood‑Derived Endothelial Progenitors. Trends in Cardiovascular Medicine. 2001;11(8):303–7. DOI:10.1016/S1050‑1738(01)00128‑1.
  40. Tsafrir A, Brautbar C, Nagler A, Elchalal U, Miller K, Bishara A. Alloreactivity of umbilical cord blood mononuclear cells: specific hyporesponse to noninherited maternal antigens. Human Immunology. 2000;61(6):548–54. DOI:10.1016/S0198‑8859(00)00110‑5.
  41. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki KI, Eguchi H et al. Transplanted cord blood‑derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000;105(11):1527–36. DOI:10.1172/JCI8296.
  42. Ma N, Stamm C, Kaminski A, Li W, Kleine H, Mullerhilke B et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/‑mice. Cardiovascular Research. 2005;66(1):45–54. DOI:10.1016/j.cardiores.2004.12.013.
  43. Roura S, Pujal J‑M, Bayes‑Genis A. Umbilical cord blood for cardiovascular cell therapy: from promise to fact: Roura et al. Annals of the New York Academy of Sciences. 2012;1254(1):66–70. DOI:10.1111/j.1749‑6632.2012.06515.x.
  44. Roura S, Bagó JR , Soler‑Botija C, Pujal JM, Gálvez‑Montón C, Prat‑Vidal C et al. Human Umbilical Cord Blood‑Derived Mesenchymal Stem Cells Promote Vascular Growth In Vivo. Milstone DS, editor. PLoS ONE. 2012;7(11):e49447. DOI:10.1371/journal.pone.0049447.
  45. Tuma J, Carrasco A, Castillo J, Cruz C, Carrillo A, Ercilla J et al. RESCUE‑HF Trial: Retrograde Delivery of Allogeneic Umbilical Cord Lining Subepithelial Cells in Patients With Heart Failure. Cell Transplantation. 2016;25(9):1713–21. DOI:10.3727/096368915X690314.
  46. Fisher SA, Doree C, Mathur A, Martin‑Rendon E. Meta‑Analysis of Cell Therapy Trials for Patients With Heart Failure. Circulation Research. 2015;116(8):1361–77. DOI:10.1161/CIRCRESAHA.116.304386.
Safiullina A. A., Uskach T. M., Tereshchenko S. N., Zhirov I. V. Cell therapy for dilated cardiomyopathy: State-of-the-art. Russian Heart Failure Journal. 2017;18(3):225–232

To access this material please log in or register

Register Authorize
Ru En