2017

150.00 rub.
Buy article
2017/№2

The prevalence of renal dysfunction and its influence on the prognosis of patients with acute heart failure

Mezhonov E. M.1, Vyalkina Ju. A.2, Shalaev S. V.1
1 – State Budgetary Institution of Health Care of Tyumen Region, "Regional Clinical Hospital #1", Kotovskogo 55, Tyumen 625023
2 – Federal State Budgetary Educational Institution of Higher Education "Tyumen State Medical University " of the Ministry of Health of the Russian Federation, Tyumen, 625023, Odesskaya street 54

Keywords: acute heart failure, prognosis, renal dysfunction, microalbuminuria, creatinine, GFR

DOI: 10.18087/rhfj.2017.2.2306

Background. Damage of kidneys as target organs is often observed in patients with cardiovascular diseases. Effects of renal function on the course of acute heart failure (AHF) and how these disorders determine prognosis of patients are important issues. Aim. To evaluate prevalence and predictive significance of renal dysfunction in patients with AHF. Materials and methods. The study included 141 patients (mean age, 57.4±9.86; males, 75.2%) admitted for symptoms of AHF with LV EF 15% to 80% (mean LV EF, 37.8±14.19%). Indexes of renal function were divided into six categories based on the glomerular filtration rate (GFR) (>60, 60–89, 45–59, 30–44, 15–29, and <60 ml/min) calculated by the formula, CKD-EPI. Acute kidney injury (AKI) was diagnosed according to the KDIGO Guidelines (2012). Primary endpoint was determined as readmission for AHF symptoms or cardiovascular death. Results. Incidence of the endpoint was analyzed with relation to GFR and microalbuminuria (MAU). Decreases in GFR were directly proportional to the incidence of readmission for AHF. Thus, at GFR >90 ml/min the readmission incidence was 37.5%, at GFR 60–89 ml/min – 33.9%, at GFR 45–59 ml/min – 48.9%, at GRF 15–44 ml/min – 78.6%, and at GFR <15 ml/min – 100% (р=0.027). Increases in MAU to >300 mg/l were associated with an unfavorable prognosis; the endpoint was observed in 81.8% of such patients and in 39.8% of patients without MAU (р=0.012). GFR <60 ml/min increased the risk of the composite primary endpoint 2.5 times (HR 95% 2.541 [1.284–5.028]; р=0.007) and GFR <45 ml/min – 10 times (HR 95% 10.157 [2.213–46.622]; р=0.003). MAU >300 mg/l increased the risk of the composite primary endpoint 6 times (HR 95% 5.946 [1.236–28.611], р=0.026). Development of AKI was associated with an increased incidence of the endpoint compared to patients without AKI, 84.6% and 41.7%, respectively (р=0.007). Fatality incidence in patients with AKI also increased to 61.5% (8 of 14 patients) vs. 11.8% in patients without AKI (р<0,001). Conclusion. Reduced GFR and MAU are important predictors of cardiovascular morbidity and mortality in patients with AHF.
  1. Iyngkaran P, Thomas M, Majoni W, Anavekar NS, Ronco C. Comorbid Heart Failure and Renal Impairment: Epidemiology and Management. Cardiorenal Medicine. 2012;2(4):281–97. DOI:10.1159/000342487.
  2. Verbrugge FH, Grieten L, Mullens W. Management of the Cardiorenal Syndrome in Decompensated Heart Failure. Cardiorenal Medicine. 2014;4(3–4):176–88. DOI:10.1159/000366168.
  3. House AA. Cardiorenal Syndrome: New Developments in the Understanding and Pharmacologic Management. Clinical Journal of the American Society of Nephrology. 2013;8(10):1808–15. DOI:10.2215/CJN.02920313.
  4. Fu Q, Cao L, Li H, Wang B, Li Z. Cardiorenal syndrome: pathophysiological mechanism, preclinical models, novel contributors and potential therapies. Chin Med J. 2014;127(16):3011–8.
  5. Afsar B, Ortiz A, Covic A, Solak Y, Goldsmith D, Kanbay M. Focus on renal congestion in heart failure. Clinical Kidney Journal. 2016;9(1):39–47. DOI:10.1093/ckj/sfv124.
  6. Filippatos G, Farmakis D, Parissis J. Renal dysfunction and heart failure: things are seldom what they seem. European Heart Journal. 2014;35(7):416–8. DOI:10.1093/eurheartj/eht515.
  7. Sarnak MJ. A Patient with Heart Failure and Worsening Kidney Function. Clinical Journal of the American Society of Nephrology. 2014;9(10):1790–8. DOI:10.2215/CJN.11601113.
  8. Metra M, Cotter G, Gheorghiade M, Dei Cas L, Voors AA. The role of the kidney in heart failure. European Heart Journal. 2012;33(17):2135–42. DOI:10.1093/eurheartjehs205.
  9. Giamouzis G, Butler J, Triposkiadis F. Renal Function in Advanced Heart Failure: renal function in advanced heart failure. Congestive Heart Failure. 2011;17(4):180–8. DOI:10.1111/j.1751-7133.2011.00240.x.
  10. Waldum-Grevbo B. What Physicians Need to Know About Renal Function in Outpatients with Heart Failure. Cardiology. 2015;131(2):130–8. DOI:10.1159/000381012.
  11. Givertz MM, Postmus D, Hillege HL, Mansoor GA, Massie BM, Davison BA et al. Renal Function Trajectories and Clinical Outcomes in Acute Heart Failure. Circulation: Heart Failure. 2014;7(1):59–67. DOI:10.1161/CIRCHEARTFAILURE.113.000556.
  12. McCullough PA, Kellum JA, Haase M, Müller C, Damman K, Murray PT et al. Pathophysiology of the Cardiorenal Syndromes: Executive Summary from the Eleventh Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). In: McCullough PA, Kellum JA, Mehta RL, Murray PT, Ronco C, editors. Contributions to Nephrology. -Basel: S. KARGER AG; 2013. p. 82–98.
  13. Cruz DN. Cardiorenal Syndrome in Critical Care: The Acute Cardiorenal and Renocardiac Syndromes. Advances in Chronic Kidney Disease. 2013;20(1):56–66. DOI:10.1053/j.ackd.2012.10.005.
  14. Han SW, Ryu KH. Renal Dysfunction in Acute Heart Failure. Korean Circulation Journal. 2011;41(10):565. DOI:10.4070/kcj.2011.41.10.565.
  15. Hanna EB, Hanna Deschamps E. Acute Heart Failure: Acute Cardiorenal Syndrome and Role of Aggressive Decongestion: Cardiorenal syndrome decongestion. Clinical Cardiology. 2014;37(12):773–8. DOI:10.1002/clc.22337.
  16. Bart BA, Goldsmith SR , Lee KL, Redfield MM, Felker GM, O’Connor CM et al. Cardiorenal Rescue Study in Acute Decompensated Heart Failure: Rationale and Design of CARRESS-HF, for the Heart Failure Clinical Research Network. Journal of Cardiac Failure. 2012;18(3):176–82. DOI:10.1016/j.cardfail.2011.12.009.
  17. Ito S. Cardiorenal Syndrome: An Evolutionary Point of View. Hypertension. 2012;60(3):589–95. DOI:10.1161/HYPERTENSIONAHA.111.188706.
  18. Miura M, Sakata Y, Miyata S, Nochioka K, Takada T, Tadaki S et al. Prognostic Impact of Subclinical Microalbuminuria in Patients With Chronic Heart Failure. Circulation Journal. 2014;78(12):2890–8. DOI:10.1253/circj.CJ-14-0787.
  19. Damman K, Valente MAE, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. European Heart Journal. 2014;35(7):455–69. DOI:10.1093/eurheartj/eht386.
  20. Srisawasdi P, Vanavanan S, Charoenpanichkit C, Kroll MH. The Effect of Renal Dysfunction on BNP, NT-proBNP, and Their Ratio. American Journal of Clinical Pathology. 2010;133(1):14–23. DOI:10.1309/AJCP60HTPGIGFCNK.
  21. Koyama S, Sato Y, Tanada Y, Fujiwara H, Takatsu Y. Early Evolution and Correlates of Urine Albumin Excretion in Patients Presenting With Acutely Decompensated Heart Failure. Circulation: Heart Failure. 2013;6(2):227–32. DOI:10.1161/CIRCHEARTFAILURE.112.000152.
  22. Masson S, Latini R , Milani V, Moretti L, Rossi MG, Carbonieri E et al. Prevalence and Prognostic Value of Elevated Urinary Albumin Excretion in Patients With Chronic Heart Failure: Data From the GISSI-Heart Failure Trial. Circulation: Heart Failure. 2010;3(1):65–72. DOI:10.1161/CIRCHEARTFAILURE.109.881805.
  23. Jackson CE, MacDonald MR , Petrie MC, Solomon SD, Pitt B, Latini R et al. Associations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study. European Journal of Heart Failure. 2011;13(7):746–54. DOI:10.1093/eurjhf/hfr031.
  24. Jackson CE, Solomon SD, Gerstein HC, Zetterstrand S, Olofsson B, Michelson EL et al. Albuminuria in chronic heart failure: prevalence and prognostic importance. The Lancet. 2009;374(9689):543–50. DOI:10.1016/S0140-6736(09)61378-7.
  25. Кобалава Ж. Д., Виллевальде С. В., Ефремовцева М. А. Кардиоренальные взаимодействия при декомпенсации хронической сердечной недостаточности. Рациональная фармакотерапия в кардиологии. 2016;12(2):138–46. DOI:10.20996/1819-6446-2016-12-2-138-146 [Kobalava Zh. D., Villeval`de S. V., Efremovczeva M. A. Kardiorenal`ny`e vzaimodejstviya pri dekompensaczii xronicheskoj serdechnoj nedostatochnosti. Raczional`naya farmakoterapiya v kardiologii. 2016;12(2):138–46. DOI:10.20996/1819-6446-2016-12-2-138-146].
  26. Виллевальде С. В., Кобалава Ж. Д., Соловьева А. Е., Моисеев В. С. Сочетание нарушений функции почек и печени при декомпенсации сердечной недостаточности. Терапевтический архив. 2016;88(6):40–4 [Villeval`de S. V., Kobalava Zh. D., Solov`eva A. E., Moiseev V. S. Sochetanie narushenij funkczii pochek i pecheni pri dekompensaczii serdechnoj nedostatochnosti. Terapevticheskij arxiv. 2016;88(6):40–4].
  27. Núñez J, Miñana G, Santas E, Bertomeu-González V. Cardiorenal Syndrome in Acute Heart Failure: Revisiting Paradigms. Revista Española de Cardiología (English Edition). 2015;68(5):426–35. DOI:10.1016/j.rec.2014.10.016.
  28. Caetano F, Barra S, Faustino A, Botelho A, Mota P, Costa M et al. Síndrome cardiorrenal na insuficiência cardíaca aguda: um círculo vicioso? Revista Portuguesa de Cardiologia. 2014;33(3):139–46. DOI:10.1016/j.repc.2013.09.010.
  29. Damman K, Testani JM. The kidney in heart failure: an update. European Heart Journal. 2015;36(23):1437–44. DOI:10.1093/eurheartj/ehv010.
Mezhonov E. M., Vyalkina Ju. A., Shalaev S. V. The prevalence of renal dysfunction and its influence on the prognosis of patients with acute heart failure. Russian Heart Failure Journal. 2017;18 (2):87–93

To access this material please log in or register

Register Authorize
Ru En