2015


To access this material please log in or register

Register Authorize
2015/№5

Heart injury induced by chemotherapy in oncology diseases

Feyskhanova L. I., Malov A. A., Kharisova E. Kh.
State Budgetary Educational Institution, “Kazan State Medical University” of the RF Ministry of Health Care, Butlerova 49, Kazan 420012

Keywords: drug-induced cardiomyopathy, cardiotoxicity, chemotherapy

DOI: 10.18087/rhfj.2015.5.2109

This review focuses on development of heart damage in patients receiving chemotherapy for an oncologic disease. Authors discussed different forms and manifestations of cardiotoxicity with relation to the administered therapy. Attention was paid to major pathogenetic mechanisms. Early diagnosis of subclinical cardiopathy is important. Blood biomarkers, EchoCG, magnetic resonance imaging, and radioisotope analysis are used for this purpose. The treatment has a pathogenetic nature related with development of HF. Methods influencing oxidative stress and non-traditional medicines are also discussed.
  1. Bhave M., Akhter N., Rosen S. T. Cardiovascular toxicity of biologic agents for cancer therapy. Oncology (Williston Park, N. Y.). 2014;28 (6):482–490.
  2. Montastruc G., Favreliere S., Sommet A., Pathak A., Lapeyre-Mestre M., Perault-Pochat M.‑C., et al. Drugs and dilated cardiomyo­pathies: A case / noncase study in the French PharmacoVigilance Database. Br J Clin Pharmacol. 2010;69 (3):287–294.
  3. Truong J., Yan A. T., Cramarossa G., Chan K. K. W. Chemotherapy-induced cardiotoxicity: detection, prevention, and management. Can J Cardiol. 2014;30 (8):869–878.
  4. Шуйкова К. В., Емелина Е. И., Гендлин Г. Е. Кардиотоксичность современных химиотерапевтических препаратов. Атмосфера. Новости кардиологии. (3):9–19.
  5. Li S., Wang W., Niu T., Wang H., Li B., Shao L., et al. Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxid Med Cell Longev. 2014;2014748524.
  6. Accordino M. K., Neugut A. I., Hershman D. L. Cardiac effects of anticancer therapy in the elderly. J. Clin. Oncol. 2014;32 (24):2654–2661.
  7. Гендлин Г. Е., Сторожаков Г. И., Шуйкова К. В., Емелина Е. И., Клюшина Г. М., Миронков А. Б., и др. Острые сердечно-сосудистые события во время применения противоопухолевых химиопрепаратов: клинические наблюдения. Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2011;4 (2):155–164.
  8. Fradley M. G., Barrett C. D., Clark J. R., Francis S. A. Ventricular fibrillation cardiac arrest due to 5‑fluorouracil cardiotoxicity. Tex Heart Inst J. 2013;40 (4):472–476.
  9. Onitilo A. A., Engel J. M., Stankowski R. V. Cardiovascular toxicity associated with adjuvant trastuzumab therapy: prevalence, patient cha­racteristics, and risk factors. Ther Adv Drug Saf. 2014;5 (4):154–166.
  10. Madias J. E. Is Takotsubo syndrome in patients receiving chemotherapy drug-specific? World J Clin Cases. 2015;3 (2):204–205.
  11. Ewer M. S., Suter T. M., Lenihan D. J., Niculescu L., Breazna A., Demetri G. D., et al. Cardiovascular events among 1090 cancer patients treated with sunitinib, interferon, or placebo: a comprehensive adjudicated database analysis demonstrating clinically meaningful reversibi­lity of cardiac events. Eur. J. Cancer. 2014;50 (12):2162–2170.
  12. Khan M. F., Gottesman S., Boyella R., Juneman E. Gemcitabine-induced cardiomyopathy: a case report and review of the literature. J Med Case Rep. 2014;8220.
  13. Conklin D. J., Haberzettl P., Jagatheesan G., Baba S., Merchant M. L., Prough R. A., et al. Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice. Toxicol. Appl. Pharmacol. 2015;285 (2):136–148.
  14. Atalay F., Gulmez O., Ozsancak Ugurlu A. Cardiotoxicity following cyclophosphamidetherapy: a case report. J Med Case Rep. 2014;8:252.
  15. Nikitovic D., Juranek I., Wilks M. F., Tzardi M., Tsatsakis A., Tzanakakis G. N. Anthracycline-dependent cardiotoxicity and extracellular matrix remodeling. Chest. 2014;146 (4):1123–1130.
  16. Octavia Y., Tocchetti C. G., Gabrielson K. L., Janssens S., Crijns H. J., Moens A. L. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol. 2012;52 (6):1213–1225.
  17. Salazar-Mendiguchía J., González-Costello J., Roca J., Ariza-Solé A., Manito N., Cequier A. Anthracycline-mediated cardiomyopathy: basic molecular knowledge for the cardiologist. Arch Cardiol Mex. 2014;84 (3):218–223.
  18. Емелина Е. И., Шуйкова К. В., Гендлин Г. Е., Сторожаков Г. И., Лепков С. В., Демина Е. А. Поражение сердца при лечении современными противоопухолевыми препаратами и лучевые повреждения сердца у больных с лимфомами. Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2009;2 (2):152–160.
  19. Raj S., Franco V. I., Lipshultz S. E. Anthracycline-induced cardiotoxicity: a review of pathophysiology, diagnosis, and treatment. Curr Treat Options Cardiovasc Med. 2014;16 (6):315.
  20. Zeglinski M., Premecz S., Lerner J., Wtorek P., Dasilva M., Hasanally D., et al. Congenital absence of nitric oxide synthase 3 potentiates cardiac dysfunction and reduces survival in doxorubicin- and trastuzumab-mediated cardiomyopathy. Can J Cardiol. 2014;30 (3):359–367.
  21. Dirks-Naylor A. J. The role of autophagy in doxorubicin-induced cardiotoxicity. Life Sci. 2013;93 (24):913–916.
  22. Tacar O., Dass C. R. Doxorubicin-induced death in tumour cells and cardiomyocytes: is autophagy the key to improving future clinical outcomes? J. Pharm. Pharmacol. 2013;65 (11):1577–1589.
  23. Li D. L., Hill J. A. Cardiomyocyte autophagy and cancer chemotherapy. J. Mol. Cell. Cardiol. 2014;7154–61.
  24. Khakoo A. Y., Liu P. P., Force T., Lopez-Berestein G., Jones L. W., Schneider J., et al. Cardiotoxicity due to cancer therapy. Tex Heart Inst J. 2011;38 (3):253–256.
  25. Nordgren K. K. S., Wallace K. B. Keap1 redox-dependent regulation of doxorubicin-induced oxidative stress response in cardiac myoblasts. Toxicol. Appl. Pharmacol. 2014;274 (1):107–116.
  26. Scheffel R. S., Dora J. M., Siqueira D. R., Burttet L. M., Cerski M. R., Maia A. L. Toxic cardiomyopathy leading to fatal acute cardiac failure related to vandetanib: a case report with histopathological analysis. Eur. J. Endocrinol. 2013;168 (6):K51 – K54.
  27. Singh D., Thakur A., Tang W. H. W. Utilizing cardiac biomarkers to detect and prevent chemotherapy-induced cardiomyopathy. Curr Heart Fail Rep. 2015;12 (3):255–262.
  28. Skovgaard D., Hasbak P., Kjaer A. BNP predicts chemotherapy-related cardiotoxicity and death: comparison with gated equilibrium radionuclide ventriculography. PLoS ONE. 2014;9 (5):e96736.
  29. Mokuyasu S., Suzuki Y., Kawahara E., Seto T., Tokuda Y. High-sensitivity cardiac troponin I detection for 2 types of drug-induced cardiotoxicity in patients with breast cancer. Breast Cancer. 2014.
  30. Vacchi-Suzzi C., Bauer Y., Berridge B. R., Bongiovanni S., Gerrish K., Hamadeh H. K., et al. Perturbation of microRNAs in Rat Heart du­ring Chronic Doxorubicin Treatment. PLoS One. 2012;7 (7.):
  31. Yildirim A., Tunaoglu F. S., Kambur K., Pinarli F. G. The utili­ty of NT-proBNP and various echocardiographic methods in the determination of doxorubicin induced subclinical late cardiotoxicity. Kardiol Pol. 2013;71 (1):40–46.
  32. García-Orta R., Mahía-Casado P., Gómez de Diego J. J., Barba-Cosials J., Rodriguez-Palomares J. F., Aguadé-Bruix S., et al. Update on cardiac imaging techniques 2013. Rev Esp Cardiol (Engl Ed). 2014;67 (2):127–134.
  33. Mele D., Rizzo P., Pollina A. V., Fiorencis A., Ferrari R. Cancer therapy-induced cardiotoxicity: role of ultrasound deformation imaging as an aid to early diagnosis. Ultrasound Med Biol. 2015;41 (3):627–643.
  34. Thavendiranathan P., Poulin F., Lim K.‑D., Plana J. C., Woo A., Marwick T. H. Use of myocardial strain imaging by echocardio­graphy for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J. Am. Coll. Cardiol. 2014;63 (25 Pt A): 2751–2768.
  35. Di Lisi D., Leggio G., Vitale G., Arrotti S., Iacona R., Inciardi R. M., et al. Chemotherapy cardiotoxicity: cardioprotective drugs and early identification of cardiac dysfunction. J Cardiovasc Med (Hagerstown). 2014.
  36. Burdick J., Berridge B., Coatney R. Strain echocardiography combined with pharmacological stress test for early detection of anthracycline induced cardiomyopathy. J Pharmacol Toxicol Methods. 2015;7315–20.
  37. Mornoş C., Petrescu L. Early detection of anthracycline-mediated cardiotoxicity: the value of considering both global longitudinal left ventricular strain and twist. Can. J. Physiol. Pharmacol. 2013;91 (8):601–607.
  38. O’Hare M., Murphy K., Mookadam F., Sharma A., Lee H. Cardio-oncology Part II: the monitoring, prevention, detection and treatment of chemotherapeutic cardiac toxicity. Expert Rev Cardiovasc Ther. 2015;13 (5):519–527.
  39. Markman T. M., Markman M. Cardiotoxicity of antineoplastic agents: what is the present and future role for imaging? Curr Oncol Rep. 2014;16 (8):396.
  40. Thavendiranathan P., Verhaert D., Kendra K. L., Raman S. V. Fulminant myocarditis owing to high-dose interleukin-2 therapy for metastatic melanoma. Br J Radiol. 2011;84 (1001):e99 – e102.
  41. Pereira G. C., Silva A. M., Diogo C. V., Carvalho F. S., Monteiro P., Oliveira P. J. Drug-induced cardiac mitochondrial toxicity and protection: from doxorubicin to carvedilol. Curr. Pharm. Des. 2011;17 (20):2113–2129.
  42. Hahn V. S., Lenihan D. J., Ky B. Cancer therapy-induced cardiotoxi­city: basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc. 2014;3 (2):e000665.
  43. Akolkar G., Bhullar N., Bews H., Shaikh B., Premecz S., Bordun K. A., et al. The role of renin angiotensin system antagonists in the prevention of doxorubicin and trastuzumab induced cardiotoxicity. Cardiovasc Ultrasound. 2015;13 (1):18.
  44. Овчинникова Е. Г., Клейментьева Т. П. Проблема профилактики ассоциированной сердечно-сосудистой патологии у онкологических больных в процессе проведения полихимиотерапии. Медицинский альманах. 2014;33 (3):159–161.
  45. Hole L. D., Larsen T. H., Fossan K. O., Limé F., Schjøtt J. Diazoxide protects against doxorubicin-induced cardiotoxicity in the rat. BMC Pharmacol Toxicol. 2014;1528.
  46. Walker J. R., Sharma A., Lytwyn M., Bohonis S., Thliveris J., Singal P. K., et al. The cardioprotective role of probucol against anthracycline and trastuzumab-mediated cardiotoxicity. J Am Soc Echocardiogr. 2011;24 (6):699–705.
  47. Greenlee H., Shaw J., Lau Y.‑K. I., Naini A., Maurer M. Lack of effect of coenzyme q10 on doxorubicin cytotoxicity in breast cancer cell cultures. Integr Cancer Ther. 2012;11 (3):243–250.
  48. Chahine N., Nader M., Duca L., Martiny L., Chahine R. Saffron extracts alleviate cardiomyocytes injury induced by doxorubicin and ischemia-reperfusion in vitro. Drug Chem Toxicol. 2015;1–10.
  49. Wu B.‑Y., Liu C.‑T., Chen S.‑Y., Tsai M.‑Y. A case of chemotherapy-induced congestive heart failure successfully treated with Chinese herbal medicine. Complement Ther Med. 2015;23 (2):251–256.
  50. Khan G., Haque S. E., Anwer T., Ahsan M. N., Safhi M. M., Alam M. F. Cardioprotective effect of green tea extract on doxorubicin-induced cardiotoxicity in rats. Acta Pol Pharm. 2014;71 (5):861–868.
  51. Carlson L. J., Cote B., Alani A. W., Rao D. A. Polymeric micellar co-delivery of resveratrol and curcumin to mitigate in vitro doxorubicin-induced cardiotoxicity. J Pharm Sci. 2014;103 (8):2315–2322.
  52. Delgado-Roche L., Hernández-Matos Y., Medina E. A., Morejón D. Á., González M. R., Martínez-Sánchez G. Ozone-Oxidative Preconditioning Prevents Doxorubicin-induced Cardio­toxicity in Sprague-Dawley Rats. Sultan Qaboos Univ Med J. 2014;14 (3):e342 – e348.
Feyskhanova L. I., Malov A. A., Kharisova E. Kh. Heart injury induced by chemotherapy in oncology diseases. Russian Heart Failure Journal. 2015;16 (5):296–302

To access this material please log in or register

Register Authorize
Ru En