2014


To access this material please log in or register

Register Authorize
2014/№6

Matrix metalloproteinases in cardiological practice

Drapkina O.M., Gegenava B.B.
State Budgetary Educational Institution of Higher Professional Education “I.M. Sechenov First Moscow State Medical University” of the RF Ministry of Health Care, Trubetskaya 8, Bldg. 2, Moscow 119991

Keywords: atherosclerosis, gelatinases, collagenases, matrixines, matrix metalloproteinases, membrane-type matrix metalloproteinases, matrilysines, plaque rupture, diabetes mellitus, cardiovascular pathology, stromelysines


DOI: 10.18087 / rhfj.2014.6.1959

The review focuses on matrix metalloproteinases (MMP), their structure and classification. Significance of MMP in cardiovascular diseases, atherosclerosis and diabetes mellitus (DM) is described in detail.
  1. Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005 Jan;85 (1):1–31.
  2. Spinale FG. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res. 2002 Mar 22;90 (5):520–30.
  3. Shah PK. Inflammation, metalloproteinases, and increased proteo­lysis-an emerging pathophysiological paradigm in aortic aneurysm. Circulation. 1997 Oct 7;96 (7):2115–7.
  4. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003 May 2;92 (8):827–39.
  5. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999 Jul 30;274 (31):21491–4.
  6. Bode W, Gomis-Rüth FX, Stockler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-bin­ding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett. 1993 Sep 27;331 (1-2):134–40.
  7. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006 Feb 15;69 (3):562–73.
  8. Limb GA, Matter K, Murphy G et al. Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A / C degradation during apoptosis. Am J Pathol. 2005 May;166 (5):1555–63.
  9. Kwan JA, Schulze CJ, Wang W et al. Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J. 2004 Apr;18 (6):690–2.
  10. Luo D, Mari B, Stoll I, Anglard P. Alternative splicing and promo­ter usage generates an intracellular stromelysin 3 isoform directly translated as an active matrix metalloproteinase. J Biol Chem. 2002 Jul 12;277 (28):25527–36.
  11. Allan JA, Docherty AJ, Barker PJ et al. Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem J. 1995 Jul 1;309 (pt 1):299–306.
  12. Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase: inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific ¾- and ¼-length fragments. J Biol Chem. 1995 Mar 17;270 (11):5872–6.
  13. Patterson ML, Atkinson SJ, Knäuper V, Murphy G. Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Lett. 2001 Aug 17;503 (2-3):158–62.
  14. Itoh T, Ikeda T, Gomi H et al. Unaltered secretion of β-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2) – deficient mice. J Biol Chem. 1997 Sep 5;272 (36):22389–92.
  15. Martignetti JA, Aqeel AA, Sewairi WA et al. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat Genet. 2001 Jul;28 (3):261–5.
  16. Suzuki K, Enghild JJ, Morodomi T et al. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry. 1990 Nov 6;29 (44):10261–70.
  17. Murphy G, Segain JP, O'Shea M et al. The 28‑kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J Biol Chem. 1993 Jul 25;268 (21):15435–41.
  18. Pei D, Majmudar G, Weiss SJ. Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem. 1994 Oct 14;269 (41):25849–55.
  19. Li W, Gibson CW, Abrams WR et al. Reduced hydrolysis of amelogenin may result in X-linked amelogenesis imperfecta. Matrix Biol. 2001 Jan;19 (8):755–60.
  20. Uria JA, López-Otín C. Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res. 2000 Sep 1;60 (17):4745–51.
  21. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function and biochemistry. Circ Res. 2003 may 2;92 (8):827–39.
  22. Ohuchi E, Imai K, Fujii Y et al. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem. 1997 Jan 24;272 (4):2446–51.
  23. Holmbeck K, Bianco P, Caterina J et al. MT1‑MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell. 1999 Oct 1;99 (1):81–92.
  24. Pepper MS. Extracellular proteolysis and angiogenesis. Thromb Haemost. 2001 Jul;86 (1):346–55.
  25. Sekine-Aizawa Y, Hama E, Watanabe K et al. Matrix metalloproteinase (MMP) system in brain: identification and characterization of brain-specific MMP highly expressed in cerebellum. Eur J Neurosci. 2001 Mar;13 (5):935–48.
  26. Velasco G, Cal S, Merlos-Suárez A et al. Human MT6‑matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors. Cancer Res. 2000 Feb 15;60 (4):877–82.
  27. Pei D. Leukolysin / MMP25 / MT6‑MMP: a novel matrix metalloproteinase specifically expressed in the leukocyte lineage. Cell Res. 1999 Dec;9 (4):291–303.
  28. Shapiro SD, Kobayashi DK, Ley TJ. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem. 1993 Nov 15;268 (32):23824–9.
  29. Shipley JM, Wesselschmidt RL, Kobayashi DK et al. Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci U S A. 1996 Apr 30;93 (9):3942–6.
  30. Sedlacek R, Mauch S, Kolb B et al. Matrix metalloproteinase MMP-19 (RASI 1) is expressed on the surface of activated periphe­ral blood mononuclear cells and is detected as an autoantigen in rheumatoid arthritis. Immunobiology. 1998 Feb;198 (4):408–23.
  31. Sadowski T, Dietrich S, Muller M et al. Matrix metalloproteinase-19 expression in normal and diseased skin: dysregulation by epidermal proliferation. J Invest Dermatol. 2003 Nov;121 (5):989–96.
  32. Velasco G, Pendas AM, Fueyo A et al. Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem. 1999 Feb 19;274 (8):4570–6.
  33. Pei D, Kang T, Qi H. Cysteine array matrix metalloproteinase (CA-MMP) / MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J Biol Chem. 2000 Oct 27;275 (43):33988–97.
  34. Yang MZ, Kurkinen M. Cloning and characterization of a novel matrix metalloproteinase (MMP), CMMP, from chicken embryo fibroblasts-CMMP, Xenopus XMMP and human MMP-19 have a conserved unique cysteine in the catalytic domain. J Biol Chem. 1998 Jul 10;273 (28):17893–900.
  35. Marchenko GN, Strongin AY. MMP-28, a new human matrix metalloproteinase with an unusual cysteine-switch sequence is widely expressed in tumors. Gene. 2001 Mar 7;265 (1-2):87–93.
  36. Lohi J, Wilson CL, Roby JD, Parks WC. Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. J Biol Chem. 2001 Mar 30;276 (13):10134–44.
  37. Saarialho-Kere U, Kerkela E, Jahkola T et al. Epilysin (MMP-28) expression is associated with cell proliferation during epithelial repair. J Invest Dermatol. 2002 Jul;119 (1):14–21.
  38. Драпкина О. М., Палаткина Л., Зятенкова Е. Плейотропные эффекты статинов. влияние на жесткость сосудов. Врач. 2012;9:5–8.
  39. Braunwald E. Biomarkers in heart failure. N Engl J Med. 2008 May 15;358 (20):2148–59.
  40. Fertin M, Dubois E, Belliard A et al. Usefulness of circulating biomarkers for the prediction of left ventricular remodeling after myocardial infarction. Am J Cardiol. 2012 Jul 15;110 (2):277–83.
  41. Maisel AS, Krishnaswamy P, Nowak RM et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002 Jul 18;347 (3):161–7.
  42. Opdenakker G, Van den Steen PE, Dubois B et al. Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol. 2001 Jun;69 (6):851–9.
  43. Tang WH, Francis GS, Morrow DA et al. National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: clinical utilization of cardiac biomarker testing in heart failure. Circulation. 2007 Jul 31;116 (5):e99–109.
  44. Velagaleti RS1, Gona P, Larson MG et al. Multimarker approach for the prediction of heart failure incidence in the community. Circulation. 2010 Oct 26;122 (17):1700–6.
  45. Lang CC, Mancini DM. Non-cardiac comorbidities in chronic heart failure. Heart. 2007 Jun;93 (6):665–71.
  46. Maisel AS, Krishnaswamy P, Nowak RM et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002 Jul 18;347 (3):161–7.
  47. Halade GV, Jin YF, Lindsey ML. Matrix metalloproteinase (MMP) – 9: A proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther. 2013 Jul;139 (1):32–40.
  48. Blankenberg S, Rupprecht HJ, Poirier O et al. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation. 2003 Apr 1;107 (12):1579–85.
  49. Sundstrom J, Evans JC, Benjamin EJ et al. Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures: the Framingham Heart Study. Circulation. 2004 Jun 15;109 (23):2850–6.
  50. Hlatky MA, Ashley E, Quertermous T et al. Matrix metalloprote­inase circulating levels, genetic polymorphisms, and susceptibility to acute myocardial infarction among patients with coronary artery disease. Am Heart J. 2007 Dec;154 (6):1043–51.
  51. Fertin M, Dubois E, Belliard A et al. Usefulness of circulating biomarkers for the prediction of left ventricular remodeling after myocardial infarction. Am J Cardiol. 2012 Jul 15;110 (2):277–83.
  52. Драпкина О. М., Гегенава Б. Б. Фиброз миокарда у больных сахарным диабетом. Рациональная фармакотерапия в кардиологии. 2013;9 (1):62–5.
  53. Драпкина О. М., Палаткина Л. Статины – визитная карточка кардиолога. Consilium Medicum.2012; (14) 5:28–31.
  54. Драпкина О. М. РААС и фиброз. Гепатокардиальные связи. Русский Медицинский Журнал 2011;19 (14):1–6.
  55. Orbe J, Fernandez L, Rodriguez JA et al. Different expression of MMPs / TIMP-1 in human atherosclerotic lesions. Relation to plaque features and vascular bed. Atherosclerosis. 2003 Oct;170 (2):269–76.
  56. Knox JB, Sukhova GK, Whittemore AD, Libby P. Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. Circulation. 1997 Jan 7;95 (1):205–12.
  57. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994 Dec;94 (6):2493–503.
  58. Luttun A, Lutgens E, Manderveld A et al. Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation. 2004 Mar 23;109 (11):1408–14.
  59. Lee JK, Zaidi SH, Liu P et al. A serine elastase inhibitor reduces inflammation and fibrosis and preserves cardiac function after experimentally-induced murine myocarditis. Nat Med. 1998 Dec;4 (12):1383–91.
  60. Liu P, Sun M, Sader S. Matrix metalloproteinases in cardiovascular disease. Can J Cardiol. 2006 Feb;22 (Suppl B): 25B-30B.
  61. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999 Jul 30;274 (31):21491–4.
  62. Uemura S, Matsushita H, Li W et al. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res. 2001 Jun 22;88 (12):1291–8.
  63. Ebihara I, Nakamura T, Shimada N, Koide H. Increased plasma metalloproteinase-9 concentrations precede development of microalbuminuria in non-insulin-dependent diabetes mellitus. Am J Kidney Dis. 1998 Oct;32 (4):544–50.
  64. Vu TH, Shipley JM, Bergers G et al. MMP-9 / gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998 May 1;93 (3):411–22.
  65. Qian X, Wang TN, Rothman VL et al. Thrombospondin-1 modulates angiogenesis in vitro by up-regulation of matrix metalloproteinase-9 in endothelial cells. Exp Cell Res. 1997 Sep 15;235 (2):403–12.
  66. Herron GS, Banda MJ, Clark EJ et al. Secretion of metalloproteina­ses by stimulated capillary endothelial cells, II: expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J Biol Chem. 1986 Feb 25;261 (6):2814–8.
  67. Hanemaaijer R, Koolwijk P, le Clercq L et al. Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells: effects of tumour necrosis factor-α, interleukin-1 and phorbol ester. Biochem J. 1993 Dec 15;296 (pt 3):803–9.
  68. McMillan WD, Tamarina NA, Cipollone M et al. Size matters: the relationship between MMP-9 expression and aortic diameter. Circulation. 1997 Oct 7;96 (7):2228–32.
  69. Sato H, Kita M, Seiki M. v-Src activates the expression of 92‑kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements: a mechanism regulating gene expression independent of that by inflammatory cytokines. J Biol Chem. 1993 Nov 5;268 (31):23460–8.
  70. Li N, Karin M. Is NF-κB the sensor of oxidative stress? FASEB J. 1999 Jul;13 (10):1137–43.
  71. Lee TS, Saltsman KA, Ohashi H, King GL. Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc Natl Acad Sci U S A. 1989 Jul;86 (13):5141–5.
  72. Trocme C, Gaudin P, Berthier S et al. Human B lymphocytes synthesize the 92‑kDa gelatinase, matrix metalloproteinase-9. J Biol Chem. 1998 Aug 7;273 (32):20677–84.
  73. Fukumoto S, Nishizawa Y, Hosoi M et al. Protein kinase C δ inhibits the proliferation of vascular smooth muscle cells by suppressing G1 cyclin expression. J Biol Chem. 1997 May 23;272 (21):13816–22.
  74. Chatelain E, Boscoboinik DO, Bartoli GM et al. Inhibition of smooth muscle cell proliferation and protein kinase C activity by tocopherols and tocotrienols. Biochim Biophys Acta. 1993 Mar 10;1176 (1-2):83–9.
  75. Benna JE, Dang PM, Gaudry M et al. Phosphorylation of the respiratory burst oxidase subunit p67 (phox) during human neutrophil activation: regulation by protein kinase C-dependent and independent pathways. J Biol Chem. 1997 Jul 4;272 (27):17204–8.
  76. Benna JE, Dang PM, Gaudry M et al. Phosphorylation of the respiratory burst oxidase subunit p67 (phox) during human neutrophil activation: regulation by protein kinase C-dependent and independent pathways. J Biol Chem. 1997 Jul 4;272 (27):17204–8.
  77. Бобкова И. Н., Козловская Л. В., Ли О. А. Матриксные металлопротеиназы в патогенезе острых и хронических заболеваний почек (Обзор литературы). Нефрология и диализ. 2008;10 (2).
Drapkina O. M., Gegenava B. B. Matrix metalloproteinases in cardiological practice. Russian Heart Failure Journal. 2014;15 (6):397–404

To access this material please log in or register

Register Authorize
Ru En