To access this material please log in or register

Register Authorize

Time-related changes in ischemic mitral insufficiency and survival following left ventricular reconstruction and isolated coronary bypass in patients with advanced left ventricular systolic dysfunction (6‑year follow-up)

Chernyavsky A. M., Ruzmatov T. M., Efendiev V. U., Ponomarev D. N., Podsosnikova T. N., Efanova O. S., Razumakhin R. A., Nesmachny A. S.

Keywords: left ventricular dysfunction, ischemic mitral insufficiency, reconstructive coronary artery surgery

DOI: 10.18087/rhfj.2013.6.1899

Background. Tactics for treatment of moderate ischemic mitral insufficiency (MIS) associated with pronounced LV dysfunction is still a subject of much controversy. Aim. Evaluating changes in MIS and clinical condition in patients following coronary bypass (CBP) in combination with LV reconstruction (LVR) and following isolated CBP in the delayed postoperative period. Materials and methods. Data of 82 patients participating in a prospective randomized study, who underwent a surgery in 2005–2007, were analyzed. The patients were divided into two groups: group 1, patients who have had CBP in combination with LVR according to Dor (n=41); group 2, patients who have had isolated CBP (n=41). These patients did not undergo any MV interventions. EchoCG monitoring was performed before discharging the patients and then annually for 6 years of follow-up. Also during a monitoring visit, clinical status of patients was evaluated and 6min walk test was performed. Results. Patients of both groups with moderate ischemic MIS and pronounced LV dysfunction had statistically significant delayed postoperative increases in LV dimensions and cavities. MIS severity was also increased in both groups in the delayed postoperative period; however the difference was not statistically significant. In the delayed period (at 6 years), LV EF in the LVR+CBP group was decreased to baseline preoperative values, which indicated development of further LV remodeling in the delayed postoperative period. Delayed postoperative survival was not statistically significantly different between groups. However, survival of patients significantly differed depending on the type of LV dysfunction. Conclusion. In moderate MIS and pronounced LV dysfunction, the type of surgical intervention does not influence MIS severity in the delayed postoperative period. Isolated CBP provides the best survival outcome in patients with type I LV dysfunction.
  1. Национальные рекомендации ВНОК и ОССН по диагностике и лечению ХСН (третий пересмотр). Журнал Сердечная Недостаточность. 2010;11 (1):3–62.
  2. McMurray JJ, Adamopoulos S, Anker SD et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33 (14):1787–1847.
  3. Стрекалов Д. Л. Молекулярные основы патогенеза сердечно-сосудистых заболеваний. Учебное пособие. – СПбГПМА, 2004. – 4–5.
  4. Симбирцев А. С., Громова А. Ю. Функциональный полиморфизм генов регуляторных молекул воспаления. Цитокины и воспаление. 2005;4 (1):3–10.
  5. Бабак О. Я., Кравченко Н. А. Роль ренин-ангиотензиновой системы в ремоделировании сердца и сосудов. Украинский терапевтический журнал. 2005;2:89–96.
  6. Дедов И. И., Шестакова М. В. Сахарный диабет и артериальная гипертензия. – М.: МИА, 2006. – с. 74–75.
  7. Багмет А. Д. I / D полиморфизм гена ангиотензинпревращающего фермента, морфо-функциональное состояние сердца и суточный профиль артериального давления у молодых мужчин с артериальной гипертонией. Терапевт. арх. 2006;78 (9):5–12.
  8. Окороков, А. Н. Диагностика болезней внутренних органов: практ. рук. В 9 т. Т. 7. А. Н. Окороков. – М.: Медицинская литература, 2001. – с. 25–28.
  9. Margues GD, Krieger JE, Casarini DE. Angiotensin-converting enzyme: a possible genetic marker of hypertension. Hypertension. 2002;20 (Suppl 4):263.
  10. Rigat B, Hubert C, Alhenc-Gelas F et al. An insertion / deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86 (4):1343–1346.
  11. Alvarez R, Reguero JR, Batalla A et al. Angiotensin-converting enzyme and angiotensin II receptor 1 polymorphisms: association with early coronary disease. Cardiovasc Res. 1998;40 (2):375–379.
  12. Fatini C, Abbate R, Pepe G et al. Searching for a better assessment of the individual coronary risk profile: the role of angiotensin-converting enzyme, angiotensin II type 1 receptor and angiotensinogen gene polymorphisms. Eur Heart J. 2000;21 (8):633–638.
  13. Andersson B, Sylven C. The DD genotype of the angiotensin-converting enzyme gene is associated with increased mortality in idiopathic heart failure. J Am Coll Cardiol. 1996;28 (1):162–167.
  14. Ishigami T, Iwamoto T, Tamura K et al. Angiotensin I converting enzyme (ACE) gene polymorphism and essential hypertension in Japan. Ethnic difference of ACE genotype. Am J Hypertens. 1995;8 (1):95–97.
  15. Nakahara K, Matsushita S, Matsuoka H. Insertion / deletion polymorphism in the angiotensin-converting enzyme gene affects cardiac weight. Circulation. 2000;101 (2):148–151.
  16. Lechin M, Quicones MA, Omran A et al. Angiotensin-I-converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation. 1995;92 (7):1808–1812.
  17. Mulder HJ, van Geel PP, Schalij MJ et al. DD ACE gene polymorphism is associated with increased coronary artery endothelial dysfunction: the PREFACE trial. Heart. 2003;89 (5):557–558.
  18. Целуйко В. И., Пелецкая О. В. Влияние типа I / D полиморфизма гена ангиотензинпревращающего фермента на клиническое течение гипертонической болезни. Украинский кардиологический журнал. 2008;2:33–37.
  19. Prasad A, Narayanan S, Husain S et al. Insertion-deletion polymorphism of the ACE gene modulates reversibility of endothelial dysfunction with ACE inhibition. Circulation. 2000;102 (1):35–41.
  20. O'Toole L, Stewart M, Padfield P, Channer K. Effect of the insertion / deletion polymorphism of the angiotensin-converting enzyme gene on response to angiotensin-converting enzyme inhi­bitors in patients with heart failure. J Cardiovasc Pharmacol. 1998;32 (6):988–994.
  21. Takahashi T, Yamaguchi E, Furuya K, Kawakami Y. The ACE gene polymorphism and cough threshold for capsaicin after cilazapril usage. Respir Med. 2001;95 (2):130–135.
  22. Bloem LJ, Manatunga AK, Tewksbury DA, Pratt JH. The Serum angiotensinogen concentration and the angiotensinogen gene in white and black children. J Clin Invest. 1995 Mar;95 (3):948–953.
  23. Danser AH, Derkx FH, Hense HW et al. Angiotensinogen (M235T) and angiotensin-converting enzyme (I / D) polymorphisms in association with plasma renin and prorenin levels. J Hypertens. 1998;16 (12 Pt 2):1879–1883.
  24. Hingorani AD, Jia H, Stevens PA et al. Renin-angiotensin system gene polymorphisms influence blood pressure and the response to angiotensin converting enzyme inhibition. J Hypertens. 1995;13 (12 Pt 2):1602–1609.
  25. Bonnardeaux A, Davies E, Jeunemaitre X et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension. 1994;24 (1):63–69.
  26. Benetos A, Gautier S, Ricard S et al. Influence of angiotensin-converting enzyme and angiotensin II type 1 receptor gene polymorphisms on aortic stiffness in normotensive and hypertensive patients. Circulation. 1996;94 (4):698–703.
  27. Van Geel PP, Pinto YM, Voors AA et al. Angiotensin II type 1 receptor A1166C gene polymorphism is associated with an increased response to angiotensin II in human arteries. Hypertension. 2000;35 (3):717–721.
  28. Дорофеева Н. П., Кастанаян А. А., Шлык С. В. и др. Полиморфизм генов ренин-ангиотензиновой системы у больных артериальной гипертензией и ишемической болезнью сердца, осложненной хронической сердечной недостаточностью. Артериальная гипертензия. 2005;11 (4):235–238.
  29. Staessen JA, Ginocchio G, Wang JG et al. Genetic variability in the renin-angiotensin system: prevalence of alleles and genotypes. J Cardiovasc Risk. 1997;4 (5-6):401–422.
  30. Butler R, Morris AD, Struthers AD. Angiotensin-converting enzyme gene polymorphism and cardiovascular disease. Clin Sci (Lond). 1997;93 (5):391–400.
  31. Кириченко П. Ю. Роль гемодинамических, конституционных и генетических факторов в формировании хронической недостаточности кровообращения. Автореф. дис…. канд. мед. наук. – СПб. 2001. – 137с.
  32. Candy GP, Skudicky D, Mueller UK et al. Association of left ventricular systolic performance and cavity size with angiotensin-converting enzyme genotype in idiopathic dilated cardiomyopathy. Am J Cardiol. 1999;83 (5):740–744.
  33. Bai Y, Wang L, Hu S, Wei Y. Association of angiotensin-converting enzyme I / D polymorphism with heart failure: a meta-analysis. Mol Cell Biochem. 2012;361 (1-2):297–304.
  34. Rodriguez-Perez JC, Rodriguez-Esparragon F, Hernandez-Perera O et al. Association of angiotensinogen M235T and A (-6) G gene polymorphisms with coronary heart disease with independence of essential hypertension: the PROCAGENE study. Prospective Cardiac Gene. J Am Coll Cardiol. 2001;37 (6):1536–1542.
  35. Katsuya T, Koike G, Yee TW et al. Association of angiotensinogen gene T235 variant with increased risk of coronary heart disease. Lancet. 1995;345 (8965):1600–1603.
  36. Xiang K, Zheng T, Sun D, Li J. The Relationship between angiotensin II type 1 receptor gene and coronary heart disease, hypertension and diabetes mellitus in Chinese. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 1998;15 (1):9–12.
  37. Zedda N, Onni S, Angius A et al. Does a genetic predisposition for infarction expansion exist? Evaluation of genetic polymorphisms of the renin-angiotensin system. Cardiologia. 1997;42 (3):281–285.
  38. Hamon M, Amant C, Bauters C et al. Dual determination of angiotensin-converting enzyme and angiotensin-II type 1 receptor genotypes as predictors of restenosis after coronary angioplasty. Am J Cardiol. 1998;81 (1):79–81.
  39. Hamon M, Fradin S, Denizet A et al. Prospective evaluation of the effect of an angiotensin I converting enzyme gene polymorphism on the long term risk of major adverse cardiac events after percutaneous coronary intervention. Heart. 2003;89 (3):321–325.
  40. Poirier O, Georges J-L, Ricard S et al. New polymorphisms of the angiotensin II type 1 receptor gene and their association with myocardial infarction and blood pressure: the ECTIM study. Etude Cas-Temoin de 1'Infarctus du Myocarde. J Hypertens. 1998;16 (10):1443–1447.
  41. Turki J, Lorenz JN, Green SA et al. Myocardial signaling defects and impaired cardiac function of a human beta 2‑adrenergic receptor polymorphism expressed in transgenic mice. Proc Natl Acad Sci USA. 1996;93 (19):10483–10488.
  42. Liggett SB, Wagoner LE, Craft LL et al. The Ile164 beta 2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest. 1998;102 (8):1534–1539.
  43. Pereira SB, Velloso MW, Chermont S et al. β-adrenergic receptor polymorphisms in susceptibility, response to treatment and prognosis in heart failure: Implication of ethnicity. Mol Med Rep. 2013;7 (1):259–265.
  44. Yancy CW. Race and the response to adrenergic blockade with carvedilol in patients with chronic heart failure. N Engl J Med. 2001;344 (18):1358–1365.
  45. Rochais F, Vilardaga J-P, Nikolaev VO, Bьnemann M, Lohse MJ, Engelhardt S. Real-time optical recording of beta1‑adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol. J Clin Invest. 2007;117 (1):229–235.
  46. Mialet Perez J, Rathz DA, Petrashevskaya NN et al. Beta 1‑adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med. 2003;9 (10):1300–1305.
  47. Terra SG, Hamilton KK, Pauly DF et. al. Beta1‑adrenergic receptor polimorphisms and left ventricular remodeling changes in response to beta-blocker therapy. Pharmacogenet Genomics. 2005;15 (4):227–234.
  48. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury, Part I: basic mechanisms and in vivo monitoring of ROS. Circulation. 2003;108 (16):1912–1916.
  49. Neves AL, Mohammedi K, Emery N et al. Allelic variations in superoxide dismutase-1 (SOD1) gene and renal and cardiovascular morbidity and mortality in type 2 diabetic subjects. Mol Genet Metab. 2012;106 (3):359–365.
  50. Тепляков А. Т., Дибиров М. М., Болотская М. А. и др. Модули­рующее влияние карведилола на активацию цитокинов и рег­ресс сердечной недостаточности у больных с постинфарктной дисфункцией сердца. Кардиология». 2004;44 (9):50–57.
  51. Шилов С. Н. Хроническая сердечная недостаточность при ишемической болезни сердца: клинико-генетические механизмы развития и возможности улучшения ранней диагностики, профилактики и медикаментозной терапии. – Автореф. дисс. докт. мед. наук. Томск, 2011. – 50с.
  52. Adams V, Nehrhoff B, Späte U et al. Induction of iNOS expression in skeletal muscle by IL-1beta and NFkappaB activation: an in vitro and in vivo study. Cardiovasc Res. 2002;54 (1):95–104.
  53. Gealekman O, Abassi Z, Rubinstein I et al. Role of myocardial inducible nitric oxide synthase in contractile dysfunction and beta-adrenergic hyporesponsiveness in rats with experimental volume-overload heart failure. Circulation. 2002;105 (2):236–243.
  54. Wollert KC, Fiedler B, Gambaryan S et al. Gene transfer of cGMP-dependet protein kinase I enhances the antihypertrophic effects of nitric oxide in cardiomyocytes. Hypertension. 2002;39 (1):87–92.
  55. Torre-Amione G, Kapadia S, Benedict C et al. Proinflammatory cytokine levels in patients with de­pressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol. 1996;27 (5):1201–1206.
  56. Spinarovб L, Spinar J, Vaskщ A et al. Genetics of humoral and cytokine activation in heart failure and its importance for risk stratification of patients. Exp Mol Pathol. 2008;84 (3):251–255.
  57. Spinarova L, Spinar J, Vaskщ A et al. Does G8002A polymorphism in endothelin gene have a meaning for other risks at the patients with heart failure. Vnitr Lek. 2006;52 (1):34–39.
  58. Spinarova L, Spinar J, Vaskщ A et. al. Genetics of humoral and cytokine activation in heart failure and its importance for risk stratification of patients. Exp Mol Pathol. 2008;84 (3):251–255.
  59. Пузырев В. П. Генетика мультифакториальных заболеваний: между прошлым и будущим. Медицинская генетика. 2003;2 (2):498–508.
  60. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet Med. 2002;4 (2):45–61.
  61. Wang WY, Zee RY, Morris BJ. Association of angiotensin II type 1 receptor gene polymorphism with essential hypertension. Clin Genet. 1997;51 (1):31–34.
  62. Imumorin IG, Dong Y, Zhu H et al. A gene-environment interaction model of stress-induced hypertension. Cardiovasc Toxicol. 2005;5 (2):109–132.
  63. Линчак Р. М. Генетические аспекты артериальной гипертензии. Сообщение первое. Вестник Национального медико-хирургического центра им. Н. И. Пирогова. 2007;2 (1):126–132.
  64. Сафроненко А. В. Генеалогические и молекулярно-генетические аспекты артериальной гипертензии. Современные проблемы науки и образования. 2012;1. Доступно на: www.science-education.ru / 101–5293.
Chernyavsky A. M., Ruzmatov T. M., Efendiev V. U. et al. Time-related changes in ischemic mitral insufficiency and survival following left ventricular reconstruction and isolated coronary bypass in patients with advanced left ventricular systolic dysfunction (6‑year follow-up). Russian Heart Failure Journal. 2013;14 (6):347-352

To access this material please log in or register

Register Authorize
Ru En