To access this material please log in or register

Register Authorize

Effect of antiapoptotic protein p53 gene polymorphism on risk for development of myocardial ischemic remodeling, apoptosis, and course of chronic heart failure

Teplyakov A. T., Berezikova E. N., Shilov S. N., Efremov A. V., Safonov I. D., Pustovetova M. G. Popova A. A., Mayanskaya S. D., Pushnikova E. Yu., Karpov R. S.

Keywords: apoptotic protein p53 gene, gene polymorphism, myocardial remodeling, CHF

DOI: 10.18087/rhfj.2013.3.1777

Background. Despite significant achievements in treatment of IHD and CHF, prognosis of these diseases remains very serious. For this reason, timely prevention and early diagnostics have been relevant. Aim. To study clinical and genetic aspects of the effect of DNA-dependent apoptotic protein p53 gene polymorphism (polymorphic locus Arg72Pro, exon 4) on development of LV ischemic remodeling, myocardial apoptosis and CHF severity in patients with IHD. Materials and methods. 412 patients with CHF (263 males and 149 females, mean age 56.3±5.4 years) were evaluated. Genotypes were identified using the RFLP analysis of PCR products. The control group included 211 people (97 males and 114 females, mean age 53.9±5.1 years) without documented signs of cardiovascular abnormalities. Results. In patients with CHF, the p53 gene polymorphism was associated with high individual risks for CHF, severity of CHF clinical signs as well as with peculiarities of the CHF course. The Arg / Arg genotype of p53 exon 4 Arg72Pro polymorphic locus was associated with high risk for HCF development and severity in patients with IHD. At the same time, the Arg / Pro genotype manifested itself as a protective factor in respect of the disease severity. In CHF with ischemic remodeling, carriage of the p53 Arg / Arg genotype was associated with obvious disorders of cardiac inotropy and LV structural alterations. Conclusion. Study results convincingly demonstrated that the p53 gene polymorphism is associated with high individual risk for CHF development, CHF severity and peculiarities of the CHF course.
Full Text (PDF)
  1. Pangonyte D, Stalioraityte E, Ziuraitiene R et al. Cardiomyocyte remodeling in ischemic heart disease. Medicina (Kaunas). 2008;44 (11):848–854.
  2. Хлапов А. П, Вечерский Ю. Ю, Рязанцева Н. В. и др. Роль апоптоза кардиомиоцитов в механизмах ишемического ремоделирования миокарда. Бюллетень сибирской медицины. 2008;3:33–37.
  3. Калюжин В. В., Тепляков А. Т., Вечерский Ю. Ю. Патогенез хронической сердечной недостаточности: изменение доминирующей парадигмы. Бюллетень сибирской медицины. 2007;4:71–76.
  4. Макарков А. И., Салмаси Ж. М., Санина Н. П. Апоптоз и сердечная недостаточность. Журнал Сердечная Недостаточность. 2003;4 (6):312–314.
  5. Непомнящих Л. М. Регенераторно-пластическая недостаточность кардиомиоцитов при нарушении синтеза белка. Бюллетень экспериментальной биологии и медицины. 2001;1:11–21.
  6. Сторожаков Г. И., Утешев Д. Б. Роль апоптоза в развитии атеросклероза, ишемии миокарда и сердечной недостаточности. Сердечная Недостаточность. 2000;1 (4):131–134.
  7. Терещенко С. Н, Бармотин Г. В, Соколовская А. А. и др. Апоптоз и иммунный статус больных острым инфарктом миокарда и сердечной недостаточностью. Успехи клинической иммунологии и аллергологии. 2000;1:179–190.
  8. Барышников А. Ю., Шишкин Ю. В. Программированная клеточная смерть (апоптоз). Российский онкологический журнал. 1996;1:58–61.
  9. Esterbauer H, Wang G, Puhl H. Lipid peroxidation and its role in atherosclerosis. Br Med Bull. 1993;49 (3):566–576.
  10. Fortuno MA, Gonzalez A, Ravassa S et al. Clinical implications of apoptosis in hypertensive heart disease. Am J Physiol Heart Circ Physiol. 2003;284 (5):H1495–1506.
  11. Fortuño MA, Ravassa S, Fortuño A et al. Cardiomyocyte apoptotic cell death in arterial hypertension mechanisms and potential mana­gement. Hypertension. 2001;38 (6):1406–1412.
  12. Uo T, Kinoshita Y, Morrison RS. Apoptotic actions of p53 require transcriptional activation of PUMA and do not involve a direct mitochondrial / cytoplasmic site of action in postnatal cortical neurons. J Neurosci. 2007 Nov 7;27 (45):12198–12210.
  13. Arima Y, Nitta M, Kuninaka S et al. Transcriptional blockade induces p53‑dependent apoptosis associated with translocation of p53 to mitochondria. J Biol Chem. 2005;280 (19):19166–19176.
  14. Moorjani N, Catarino P, Trabzuni D et al. Upregulation of Bcl-2 proteins during the transition to pressure overloadinduced heart failure. Int J Cardiol. 2007;116 (1):27–33.
  15. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7 (3):683–694.
  16. Thomas M, Kalita A, Labrecque S. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol. 1999;19 (2):1092–1100.
  17. Dumont P, Leu JI, Della Pietra AC et al. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 2003;33 (3):357–365.
  18. Wang E. Regulation of apoptosis resistance and ontogeny of age-dependent diseases. Exp Gerontol. 1997;32 (4-5):471–484.
  19. Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human athero­sclerosis and restenosis. Circulation. 1995;91 (11):2703–2711.
  20. D’Agostini F, Fronza G, Campomenosi P et al. Cancer biomarkers in human atherosclerotic lesions: no evidence of p53 involvement. Cancer Epidemiol Biomarkers Prev. 1995;4 (2):111–115.
Teplyakov A. T., Berezikova E. N., Shilov S. N. et al. Effect of antiapoptotic protein p53 gene polymorphism on risk for development of myocardial ischemic remodeling, apoptosis, and course of chronic heart failure. Russian Heart Failure Journal. 2013;14 (3):111-116

To access this material please log in or register

Register Authorize
Ru En