Russian Heart Failure Journal 2012year Cardiovascular coupling: clinical value, assessment methods and features of drug treatment

To access this material please log in or register

Register Authorize

Cardiovascular coupling: clinical value, assessment methods and features of drug treatment

Mikhailov G. V., Orlova Ya. A., Ageev F. T.
Federal State Budgetary Institution, “Russian Cardiology Research and Production Complex” of the RF Ministry of Health Care, 3rd Cherepkovskaya 15a, Moscow 121552

Keywords: cardiovascular coupling, myocardial stiffness, vascular stiffness

DOI: 10.18087/rhfj.2012.2.1667

Cardiovascular coupling (CVC) is a parameter that reflects the effectiveness of heart pumping ability. Methods of assessment, clinical value and treatment possibilities are reviewed. Available data allow speaking about that CVC disorder can result in BP hyperinstability, hypersensitivity to vasodilators and change of blood volume, reduced exercise tolerance, decreased coronary reserve. There are only few works though that demonstrates CVC association to the development of complications and aggravation of ССZ semiology. Nevertheless, CVC assessment can be useful at choosing and titration of medicinal products in elderly patients, particularly in presence of marked hypertensive reaction to exercise or in orthostatic collapses, as well as in HF patients, including candidates to resynchronizing therapy.
  1. Antonini-Canterin F, Carerj S, Di Bello V et al. Arterial stiffness and ventricular stiffness: a couple of diseases or a coupling disease? A review fr om the cardiologist’s point of view. Eur J Echocardiogr. 2009;10 (1):36–43.
  2. Chen CH, Nakayama M, Talbot M. Verapamil acutely reduces ventricular-vascular stiffening and improves aerobic exercise performance in elderly individuals. J Am Coll Cardiol. 1999;33 (6):1602–9.
  3. Antonini-Canterin F, Enache R, Popescu BA, Prognostic value of ventricular-arterial coupling and B-type natriuretic peptide in patients after myocardial infarction: a five-year follow-up study. J Am Soc Echocardiogr. 2009;22 (11):1239–1245.
  4. Her AY, Kim JY, Choi EY et al. Value of ventricular stiffness index and ventriculoarterial interaction in patients with nonischemic dilated cardiomyopathy. Circ J. 2009;73 (9):1683–1690.
  5. Shah NK, Smith SM, Nichols WW et al. Carvedilol reduces aortic wave reflection and improves left ventricular / vascular coupling: a comparison with atenolol (CENTRAL Study). J Clin Hypertens (Greenwich). 2011;13 (12):917–924.
  6. Sunagawa K, Maughan W, Burkhoff D et al. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245 (5 Pt 1):H773–780.
  7. Iakovou I, Karpanou EA, Vyssoulis GP et al. Assessment of arterial ventricular coupling changes in patients under therapy with various antihypertensive agents by a non-invasive echocardiographic method. Int J Cardiol. 2004;96 (3):355–360.
  8. Kelly RP, Ting CT, Yang TM et al. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;86 (2):513–521.
  9. Senzaki H, Chen CH, Kass DA. Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation. 1996 Nov 15;94 (10):2497–506.
  10. Chen CH, Fetics B, Nevo E et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol. 2001;38 (7):2028–2034.
  11. Орел В. Р, Головина Т. Б. Гемодинамические реакции при малых нагрузках на тренажере мышц плечевого пояса. Сборник трудов ученых РГАФК 2000 г. – М.: ФОН, 2000. – с.177–183.
  12. Инструментальные методы исследования в кардиологии (Руководство). Под науч. ред. Сидоренко Г. И. – Минск, 1994. – 272 с.
  13. Ohte N, Cheng CP, Little WC.Tachycardia exacerbates abnormal left ventricular-arterial coupling in heart failure. Heart Vessels. 2003;18 (3):136–141.
  14. Cohen-Solal A, Caviezel B, Himbert D, Gourgon R. Left ventricular-arterial coupling in systemic hypertension: analysis by means of arterial effective and left ventricular elastances. J Hypertens. 1994;12 (5):591–600.
  15. Dewey FE, Rosenthal D, Murphy DJ et al. Does size matter? Clinical applications of scaling cardiac size and function for body size. Circulation. 2008;117 (17):2279–2287.
  16. Batterham AM, George KP, Whyte G et al. Scaling cardiac structural data by body dimensions: a review of theory, practice, and problems. Int J Sports Med. 1999;20 (8):495–502.
  17. Najjar SS, Scuteri A, Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension. 2005;46 (3):454–462.
  18. Niki K, Sugawara M, Chang D et al. A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels. 2002;17 (1):12–21.
  19. Siniawski H, Unbehaun A, Lehmkuhl H et al. Clinical and echocardiographic features in patients with dilated cardiomyopathy: wave intensity and diastolic abnormality analysis. Przegl Lek. 2002;59 (8):562–567.
  20. Kass DA. Age-related changes in venticular-arterial coupling: pathophysiologic implications. Heart Fail Rev. 2002;7 (1):51–62.
  21. Chantler PD, Lakatta EG, Najjar SS. Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol. 2008;105 (4):1342–1351.
  22. Heffernan KS, Patvardhan EA, Hession M. Elevated augmentation index derived from peripheral arterial tonometry is associated with abnormal ventricular-vascular coupling. Clin Physiol Funct Imaging. 2010;30 (5):313–317.
  23. Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Heart Fail Clin. 2008;4 (1):23–36.
  24. Starling MR. Left ventricular-arterial coupling relations in the normal human heart. Am Heart J. 1993;125 (6):1659–1666.
  25. Little WC, Cheng CP. Left ventricular-arterial coupling in conscious dogs. Am J Physiol. 1991;261 (1 Pt 2):H70–76.
  26. Van den Horn G. J, Westerhof N, Elzinga G. Optimal power generation by the left ventricle. A study in the anesthetized open thorax cat. Circ Res. 1985;56 (2):252–261.
  27. Burkhoff D, de Tombe P. P, Hunter WC et al. Contractile strength and mechanical efficiency of left ventricle are enhanced by physiological afterload. Am J Physiol. 1991;260 (2 Pt 2):H569–578.
  28. Redfield MM, Jacobsen SJ, Borlaug BA et al. Age- and gender-related ventricular-vascular stiffening: a community based study. Circulation. 2005;112 (15):2254–2262.
  29. Dehmer GJ, Firth BG, Lewis SE et al. Direct measurement of cardiac output by gated equilibrium blood pool scintigraphy: validation of scintigraphic volume measurements by a nongeometric technique. Am J Cardiol. 1981;47 (5):1061–1067.
  30. Sorensen SG, Ritchie JL, Caldwell JH et al. Serial exercise radionuclide angiography. Validation of count-derived changes in cardiac output and quantitation of maximal exercise ventricular volume change after nitroglycerin and propranolol in normal men. Circulation. 1980;61 (3):600–609.
  31. Little WC, Cheng CP. Effect of exercise on left ventricular– vascular coupling assessed in the pressure – volume plane. Am J Physiol. 1993;264 (5 Pt 2):H1629–633.
  32. Sharman JE, Lim R, Qasem AM et al. Validation of a generalized transfer function to noninvasively derive central blood pressure during exercise. Hypertension. 2006;47 (6):1203–1208.
  33. Sharman JE, McEniery CM, Campbell RI et al. The effect of exercise on large artery haemodynamics in healthy young men. Eur J Clin Invest. 2005;35 (12):738–744.
  34. Najjar SS, Schulman SP, Gerstenblith G et al. Age and gender affect ventricular-vascular coupling during aerobic exercise. J Am Coll Cardiol. 2004;44 (3):611–617.
  35. Chantler PD, Melenovsky V,Schulman SP et al. The sex-specific impact of systolic hypertension and systolic blood pressure on arterial-ventricular coupling at rest and during exercise. Am J Physiol Heart Circ Physiol. 2008;295 (1):H145–153.
  36. Chemla D, Antony I, Lecarpentier Y, Nitenberg A. Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. Am J Physiol Heart Circ Physiol. 2003;285 (2):H614–620.
  37. Segers P, Stergiopulos N, Westerhof N. Relation of effective arterial elastance to arterial system properties. Am J Physiol Heart Circ Physiol. 2002;282 (3):H1041–1046.
  38. Otsuki T, Maeda S, Iemitsu M et al. Contribution of systemic arterial compliance and systemic vascular resistance to effective arterial elastance changes during exercise in humans. Acta Physiol (Oxf). 2006;188 (1):15–20.
  39. Otsuki T, Maeda S, Iemitsu M et al. Systemic arterial compliance, systemic vascular resistance, and effective arterial elastance during exercise in endurance-trained men. Am J Physiol Regul Integr Comp Physiol. 2008;295 (1):R228–235.
  40. Chen C. H, Nakayama M, Nevo E et al. Coupled systolic-ventricular and vascular stiffening with age implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol. 1998;32 (5):1221–1227.
  41. Cohen-Solal A, Caviezel B, Laperche T, Gourgon R. Effects of aging on left ventricular-arterial coupling in man: assessment by means of arterial effective and left ventricular elastances. J Hum Hypertens. 1996;10 (2):111–116.
  42. Lakatta EG. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. III. Cellular and molecular clues to heart and arterial aging. Circulation. 2003;107 (3):490–497.
  43. Olivetti G, Giordano G, Corradi D et al. Gender differences and aging: effects on the human heart. J Am Coll Cardiol. 1995;26 (4):1068–1079.
  44. Kass DA, Marino P, Maughan WL, Sagawa K. Determinants of end-systolic pressure-volume relations during acute regional ischemia in situ. Circulation. 1989;80 (6):1783–1794.
  45. Rutan GH, Hermanson B, Bild DE et al. Orthostatic hypotension in older adults. The Cardiovascular Health Study. CHS Collaborative Research Group. Hypertension. 1992;19 (6):508–519.
  46. Jansen RW, Connelly CM, Kelley-Gagnon MM et al. Postprandial hypotension in elderly patients with unexplained syncope. Arch Intern Med. 1995;155 (9):945–952.
  47. Jansen RW, Lipsitz LA. Postprandial hypotension: epidemiology, pathophysiology, and clinical management. Ann Intern Med. 1995;122 (4):286–295.
  48. Capasso JM, Remily RM, Smith RH, Sonnenblick EH. Sex differences in myocardial contractility in the rat. Basic Res Cardiol. 1983;78 (2):156–171.
  49. Ong KL, Cheung BMY, Man YB et al. Prevalence, awareness, treatment, and control of hypertension among United States adults 1999–2004. Hypertension. 2007;49 (1):69–75.
  50. Arnett DK, Tyroler HA, Burke G et al. Hypertension and subclinical carotid artery atherosclerosis in blacks and whites. The Atherosclerosis Risk in Communities Study. ARIC Investigators. Arch Intern Med. 1996;156 (17):1983–1989.
  51. Amar J, Ruidavets JB, Chamontin B et al. Arterial stiffness and cardiovascular risk factors in a population-based study. J Hypertens. 2001;19 (3):381–387.
  52. Nichols WW, Nicolini FA, Pepine CJ. Determinants of isolated systolic hypertension in the elderly. J Hypertens Suppl. 1992;10 (6):S73–77.
  53. Mayet J, Hughes A. Cardiac and vascular pathophysiology in hypertension. Heart. 2003;89 (9):1104–1109.
  54. Saba PS, Ganau A, Devereux RB et al. Impact of arterial elastance as a measure of vascular load on left ventricular geometry in hypertension. J Hypertens. 1999;17 (7):1007–1015.
  55. Saeki A, Recchia F, Kass DA. Systolic flow augmentation in hearts ejecting into a model of stiff aging vasculature. Influence on myocardial perfusiondemand balance. Circ Res. 1995;76 (1):132–141.
  56. Kass DA, Saeki A, Tunin RS, Recchia FA. Adverse influence of systemic vascular stiffening on cardiac dysfunction and adaptation to acute coronary occlusion. Circulation. 1996;93 (8):1533–1541.
  57. Asanoi H, Sasayama S, Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res. 1989;65 (2):483–493.
  58. Sasayama S, Asanoi H. Coupling between the heart and arterial system in heart failure. Am J Med. 1991;90 (5B): 14S-18S.
  59. Cohen-Solal A, Faraggi M, Czitrom D et al. Left ventricular-arterial system coupling at peak exercise in dilated nonischemic cardiomyopathy. Chest. 1998;113 (4):870–877.
  60. Wong RC, Dumont CA, Austin BA et al. Relation of ventricular-vascular coupling to exercise capacity in ischemic cardiomyopathy: a cardiac multi-modality imaging study. Int J Cardiovasc Imaging. 2010;26 (2):151–159.
  61. Owan TE, Hodge DO, Herges RM et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355 (3):251–259.
  62. Klapholz M, Maurer M, Lowe AM et al. Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York Heart Failure Registry. J Am Coll Cardiol. 2004;43 (8):1432–1438.
  63. Lam CS, Roger VL, Rodeheffer RJ et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation. 2007;115 (15):1982–1990.
  64. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction. Circulation. 2003;107 (5):714–720.
  65. Borlaug BA, Melenovsky V, Russell SD et al. Impaired chronotropic and vasodilator reserves lim it exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 2006;114 (20):2138–2147.
  66. Zanon F, Aggio S, Baracca E et al. Ventricular-arterial coupling in patients with heart failure treated with cardiac resynchronization therapy: may we predict the long-term clinical response? Eur J Echocardiogr. 2009;10 (1):106–111.
  67. Chantler PD, Nussbacher A, Gerstenblith G et al. Abnormalities in arterial-ventricular coupling in older healthy persons are attenuated by sodium nitroprusside. J Am Coll Cardiol. 2000;35 (6):1697–1698.
  68. Barletta G, Del Bene MR. Effects of dipyridamole on cardiac and systemic haemodynamics: real-time three-dimensional stress echo beyond regional wall motion. J Cardiovasc Med (Hagerstown). 2011;12 (7):455–459.
  69. Pagel PS, Hettrick DA, Warltier DC. Comparison of the effects of levosimendan, pimobendan, and milrinone on canine left ventricular-arterial coupling and mechanical efficiency. Basic Res Cardiol. 1996;91 (4):296–307.
  70. Rinder MR, Miller TR, Ehsani AA. Effects of endurance exercise training on left ventricular systolic performance and ventriculoarterial coupling in patients with coronary artery disease. Am Heart J. 1999;138 (1 Pt 1):169–174.
  71. Warner JG, Metzger DC, Kitzman DW et al. Losartan improves exercise tolerance in patients with diastolic dysfunction and a hypertensive response to exercise. J Am Coll Cardiol. 1999;33 (6):1567–1572.
  72. Little WC, Zile MR, Klein A et al. Effect of losartan and hydrochlorothiazide on exercise tolerance in exertional hypertension and left ventricular diastolic dysfunction. Am J Cardiol. 2006;98 (3):383–385.
  73. Fleg JL, Schulman S, O’Connor F et al. Effects of acute beta-adrenergic receptor blockade on age-associated changes in cardiovascular performance during dynamic exercise. Circulation. 1994;90 (5):2333–2341.
  74. Lijnen P, Petrov V. Induction of cardiac fibrosis by aldosterone. 2000; 32 (6):865–879.
  75. Pitt B, Zannad F, Remme WJ et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341 (10):709–717.
  76. Cockcroft JR. Perindopril: the reasonable choice in patients with coronary artery disease. Int J Clin Pract. 2005;59 (5):600–604.
  77. Morikawa-Futamatsu K, Adachi S, Maejima Y et al. HMG-CoA reductase inhibitor fluvastatin prevents angiotensin II-induced cardiac hypertrophy via Rho kinase and inhibition of cyclin D1. Life Sci. 2006,29;79 (14):1380–1390.
  78. Takimoto E, Champion H. C, Li M. et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11 (2):214–222.
  79. Asif M, Egan J, Vasan S et al. An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci U S A. 2000;97 (6):2809–2813.
  80. Bruel A, Oxlund H. Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis. 1996;127 (2):155–165.
  81. Kass DA, Shapiro EP, Kawaguchi M et al. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation. 2001;104 (13):1464–1470.
  82. Hartog JW, Willemsen S, van Veldhuisen DJ et al. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Heart Fail. 2011;13 (8):899–908.
  83. Steendijk P, Tulner SA, Bax JJ et al. Hemodynamic effects of long-term cardiac resynchronization therapy: analysis by pressure-volume loops. Circulation. 2006;113 (10):1295–1304.
Mikhailov G. V., Orlova Ya. A., Ageev F. T. Cardiovascular coupling: clinical value, assessment methods and features of drug treatment. Russian Heart Failure Journal. 2012;13(2):111-117

To access this material please log in or register

Register Authorize
Ru En