Russian Heart Failure Journal 2011year Galectin-3 – a new biochemical marker of heart failure

To access this material please log in or register

Register Authorize

Galectin-3 – a new biochemical marker of heart failure

Ageev F. T., Azizova A. G.
Federal State Budgetary Institution, “Russian Cardiology Research and Production Complex” of the RF Ministry of Health Care, 3rd Cherepkovskaya 15a, Moscow 121552

Keywords: galectin-3, remodeling, heart failure, fibrosis

DOI: 10.18087/ rhfj.2011.2.1507

Currently, great interest is paid to biomarkers, helping in early diagnosis of heart failure and having predictive role. Galectin-3 (a new biological marker of heart failure) is closely associated with inflammation and fibrosis, determining myocardial remodeling. Data from a number of experimental and clinical trials confirm that galectin-3 is an independent predictor of worsening of HF prognosis.
  1. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008. The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society on Intensive Care Medicine (ESICM). Eur J Heart Fail. 2008;10 (10):933–989.
  2. Mukoyama M, Nakao K, Hosoda K et al. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest. 1991;87 (4):1402–1412.
  3. Волошин Н. А., Григорьева Е. А.. Лектины животного и растительногопроисхождения роль в процессах морфогенеза. Teoretycna Medycyna. «Журн. АМН України», 2005, т. 11, № 2. – С. 223–237
  4. Barondes SH, Cooper DN, Gitt MA, Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 1994;269 (33):20807–20810.
  5. Saggiorato E, Cappia S, De Giuli P et al. Galectin-3 as a presurgical immunocytodiagnostic marker of minimally invasive follicular thyroid carcinoma. J Clin Endocrinol Metab. 2001;86 (11):5152–5158.
  6. Menon RP, Hughes RC. Determinants in the N-terminal domains of galectin-3 for secretion by a novel pathway circumventing the endoplasmic reticulum-Golgi complex. Eur J Biochem. 1999;264 (2):569–576.
  7. Wang JL, Werner EA, Laing JG, Patterson RJ. Nuclear and cytoplasmic localization of a lectin-ribonucleoprotein complex. Biochem Soc Trans. 1992;20 (2):269–274.
  8. Sato S, Hughes RC. Regulation of secretion and surface expression of Mac‑2, a galactoside-binding protein of macrophages. J Biol Chem. 1994;269 (6):4424–4430.
  9. Inohara H, Akahani S, Koths K, Raz A. Interactions between galectin-3 and Mac-2‑binding protein mediate cell-cell adhesion. Cancer Res. 1996;56 (19):4530–4534.
  10. Yang RY, Hsu DK, Liu FT. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A. 1996;93 (13):6737–6742.
  11. Raz A, Zhu DG, Hogan V et al. Evidence for the role of 34‑kDa galactoside-binding lectin in transformation and metastasis. Int J Cancer. 1990;46 (5):871–877.
  12. Kawachi K, Matsushita Y, Yonezawa S et al. Galectin-3 expression in various thyroid neoplasms and its possible role in metastasis formation. Hum Pathol. 2000;31 (4):428–433.
  13. Nangia-Makker P, Thompson E, Hogan C et al. Induction of tumorigeni­city by galectin-3 in a non-tumorigenic human breast carcinoma cell line. Int J Oncol. 1995;7:1079–1087.
  14. Kim HR, Lin HM, Biliran H, Raz A. Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Res. 1999;59 (16):4148–4154.
  15. Yamazaki K, Kawai A, Kawaguchi M et al. Simultaneous induction of galectin-3 phosphorylated on tyrosine residue, p21 (WAF1 / Cip1 / Sdi1), and the proliferating cell nuclear antigen at a distinctive period of repair of hepatocytes injured by CCl4. Biochem Biophys Res Commun. 2001;280 (4):1077–1084.
  16. Matarrese P, Fusco O, Tinari N et al. Galectin-3 overexpression protects from apoptosis by improving cell adhesion properties. Int J Cancer. 2000;85 (4):545–554.
  17. Fogel S, Guittaut M, Legrand A et al. The tat protein of HIV-1 induces galectin-3 expression. Glycobiology. 1999;9 (4):383–387.
  18. Bresalier RS, Yan PS, Byrd JC et al. Expression of the endogenous galactose-binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system. Cancer. 1997;80 (4):776–787.
  19. Hsu DK, Dowling CA, Jeng KC et al. Galectin-3 expression is induced in cirrhotic liver and hepatocellular carcinoma. Int J Cancer. 1999;81 (4):519–526.
  20. Hughes RC. The galectin family of mammalian carbohydrate-binding mo­lecules. Biochem Soc Trans. 1997;25 (4):1194–1198.
  21. Hughes RC. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta. 1999;1473 (1):172–185.
  22. Kim H, Lee J, Hyun JW et al. Expression and immunohistochemical localization of galectin-3 in various mouse tissues. Cell Biol Int. 2007l; 31 (7):655–662.
  23. de Boer RA, Voors AA, Muntendam P et al. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail. 2009;11 (9):811–817.
  24. Weber KT, Gerling IC, Kiani MF et al. Aldosteronism in heart failure: a proinflammatory / fibrogenic cardiac phenotype. Search for biomarkers and potential drug targets. Curr Drug Targets. 2003;4 (6):505–516.
  25. Cingolani OH, Yang XP, Cavasin MA, Carretero OA. Increased systolic performance with diastolic dysfunction in adult spontaneously hypertensive rats. Hypertension. 2003;41 (2):249–254.
  26. Sano H, Hsu DK, Apgar JR et al. Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest. 2003;112 (3):389–397.
  27. Ochieng J, Furtak V, Lukyanov P. Extracellular functions of galectin-3. Glycoconj J. 2004;19 (7-9):527–535.
  28. Furtak V, Hatcher F, Ochieng J. Galectin-3 mediates the endocytosis of beta-1 integrins by breast carcinoma cells. Biochem Biophys Res Commun. 2001;289 (4):845–850.
  29. Lin HM, Pestell RG, Raz A, Kim HR. Galectin-3 enhances cyclin D (1) promoter activity through SP1 and a cAMP-responsive element in human breast epithelial cells. Oncogene. 2002;21 (52):8001–8010.
  30. Sharma UC, Pokharel S, van Brakel TJ et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110 (19):3121–3128.
  31. Henderson NC, Mackinnon AC, Farnworth SL et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 2008;172 (2):288–298.
  32. Henderson NC, Mackinnon AC, Farnworth SL et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci USA. 2006;103 (13):5060–5065.
  33. Sharma U, Rhaleb NE, Pokharel S et al. Novel anti-inflammatory mechanisms of N-Acetyl-Ser-Asp-Lys-Pro in hypertension-induced target organ damage. Am J Physiol Heart Circ Physiol. 2008;294 (3):H1226–1232.
  34. Liu YH, D’Ambrosio M, Liao TD et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion / growth-regulatory lectin. Am J Physiol Heart Circ Physiol. 2009;296 (2):H404–412.
  35. Pokharel S, Rasoul S, Roks AJ et al. N-acetyl-Ser-Asp-Lys-Pro inhibits phosphorylation of Smad-2 in cardiac fibroblasts. Hypertension. 2002;40 (2):155–161.
  36. Rhaleb NE, Peng H, Harding P et al. Effect of N-acetyl-seryl-aspartyl-lysyl-proline on DNA and collagen synthesis in rat cardiac fibroblasts. Hypertension. 2001;37 (3):827–832.
  37. Peng H, Carretero OA, Liao TD et al. Role of N-acetyl-seryl-aspartyl-lysyl-proline in the antifibrotic and anti-inflammatory effects of the angiotensin-converting enzyme inhibitor captopril in hypertension. Hypertension. 2007;49 (3):695–703.
  38. Peng H, Carretero OA, Raij L et al. Antifibrotic effects of N-acetyl-seryl-aspartyl-Lysyl-proline on the heart and kidney in aldosterone-salt hypertensive rats. Hypertension. 2001;37 (2 Part 2):794–800.
  39. Yang F, Yang XP, Liu YH et al. Ac-SDKP reverses inflammation and fibrosis in rats with heart failure after myocardial infarction. Hypertension. 2004;43 (2):229–236.
  40. Azizi M, Rousseau A, Ezan E et al. Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetyl-seryl-aspartyl-lysyl-proline. J Clin Invest. 1996;97 (3):839–844.
  41. van Kimmenade RR, Januzzi JL Jr, Ellinor PT et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48 (6):1217–1224.
  42. Milting H, Ellinghaus P, Seewald M et al. Plasma biomarkers of myocardial fibrosis and remodeling in terminal heart failure patients supported by mechanical circulatory support devices. J Heart Lung Transplant. 2008;27 (6):589–596.
  43. Shah RV, Chen-Tournoux AA, Picard MH et al. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail. 2010;12 (8):826–832.
  44. Lok DJ, Van Der Meer P, de la Porte PW et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol. 2010;99 (5):323–328.
  45. Lin YH, Lin LY, Wu YW et al. The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clin Chim Acta. 2009;409 (1-2):96–99.
  46. de Boer RA, Yu L, van Veldhuisen DJ. Galectin-3 in cardiac remodeling and heart failure. Curr Heart Fail Rep. 2010;7 (1):1–8.
Ageev F. T., Azizova A. G. Galectin-3 – a new biochemical marker of heart failure. Russian Heart Failure Journal. 2011;12(2):108-114.

To access this material please log in or register

Register Authorize
Ru En