Russian Heart Failure Journal 2010year Influence of candesartan and its combination with spironolactone on left ventricular diastolic function and level of collagen balance’s biochemical markers in patients with chronic heart failure and preserved left ventricular systolic function

To access this material please log in or register

Register Authorize

Influence of candesartan and its combination with spironolactone on left ventricular diastolic function and level of collagen balance’s biochemical markers in patients with chronic heart failure and preserved left ventricular systolic function

Svirida O. N., Ovchinnikov A. G., Ageev F. T.
Federal State Budgetary Institution, “Russian Cardiology Research and Production Complex” of the RF Ministry of Health Care, 3rd Cherepkovskaya 15a, Moscow 121552

Keywords: aldosterone antagonists, biochemical markers of collagen balance, angiotensin receptor blockers, diastolic dysfunction, left ventricle, CHF

DOI: 10.18087/rhfj.2010.5.1416

Background. The reason of CHF development is mostly LV diastolic dysfunction (DD). The main cause of high LV filling pressure is reduction of myocardial susceptibility due to increased number of collagen fibers (myocardial fibrosis). Objective. To evaluate the effect of angiotensin receptor blocker (ARB) candesartan and aldosterone antagonist spironolactone on LV diastolic function and level of biochemical markers of collagen balance in patients with CHF and preserved systolic function. Materials and methods. 69 patients with CHF and LVEF >45 % were randomised to 2 groups: candesartan monotherapy (n=35, 32 mg / day) and its combination with spironolactone (n=34, 25 mg / day). Examination was performed at baseline and in 6 months, and included in addition echocardiography (LV diastolic function assessment) and laboratory analyses to determine NT-proBNP blood level and biochemical markers of collagen balance. Results. Combination therapy with candesartan and spironolactone led to significant decrease of average CHF FC and NT-proBNP blood level in comparison with candesartan monotherapy. Significant increase of E / E´ and E / Vp ratio (p<0.05) was observed just in the group of candesartan mono­therapy. Candesartan did not influence collagen balance: indicators of collagen synthesis (PIP) and its decomposition (MMP‑1, TIMP-1 and CITP) remained practically unchanged. Combination therapy did not affect collagen synthesis (PIP level stayed unchanged), but accelerated its decomposition (decreased TIMP-1 and increased CITP levels, p<0.05). The most significant difference between groups on functional status, LV diastolic function and markers of collagen balance was observed in patients with baseline severe DD or atrial fibrillation. Thus, combination therapy with candesartan and spironolactone in patients with CHF and relatively preserved systolic function led to reversal of myocardial fibrosis, slowing of LV DD progression and clinical status improvement in comparison with candesartan monotherapy. These effects were more obvious in subgroup of patients with severe DD and atrial fibrillation.
  1. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium: fibrosis and rennin-angiotensin-aldosteron system. Circulation. 1991;83 (6):1849–1865.
  2. Weber KT. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation. 1997;96 (11):4065–4082.
  3. Bastien NR, Juneau AV, Ouellette J, Lambert C. Chronic AT1 receptor blockade and angiotensin-converting enzyme (ACE) inhibition in (CHF 146) cardiomyopathic hamsters: effects on cardiac hypertrophy and survival. Cardiovasc Res. 1999;43 (1):77–85.
  4. Brilla CG, Janicki JS, Weber KT. Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation. 1991;83 (5):1771–1779.
  5. Litwin SE, Litwin CM, Raya TE et al. Contractility and stiffness of noninfarcted myocardium after coronary ligation in rats. Effects of chronic angiotensin converting enzyme inhibition. Circulation. 1991;83 (3):1028–1037.
  6. Pfeffer JM, Pfeffer MA, Braunwald E. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res. 1985;57 (1):84–95.
  7. Richer C, Fornes P, Cazaubon C et al. Effects of long-term angiotensin II AT1 receptor blockade on survival, hemodynamics and cardiac remod­eling in chronic heart failure in rats. Cardiovasc Res. 1999;41 (1):100–108.
  8. Aronow W, Kronzon I. Effect of enalapril on congestive heart failure treated with diuretics in elderly patients with prior myocardial infarction and normal left ventricular ejection fraction. Am J Cardiol. 1993;71 (7):602–604.
  9. Cuocolo A, Storto G, Izzo R et al. Effects of valsartan on left ventricular diastolic function in patients with mild or moderate essential hypertension: comparison with enalapril. J Hypertens. 1999;17 (12 Pt 1):1759–1766.
  10. Friedrich SP, Lorell BH, Rousseau MF et al. Intracardiac angiotensin-converting enzyme inhibition improves diastolic function in patients with left ventri­cular hypertrophy due to aortic stenosis. Circulation. 1994;90 (6):2761–2771.
  11. Haber HL, Powers ER, Gimple LW et al. Intracoronary angiotensin-conver­ting enzyme inhibition improves diastolic function in patients with hypertensive left ventricular hypertrophy. Circulation. 1994;89 (6):2616–2625.
  12. Yusuf S, Pfeffer MA, Swedberg K et al. Effects of candesartan in patients with chronic heart failure and preserved left – ventricular ejection fraction: the CHARM Preserved Trial. Lancet. 2003;362 (9386):777–781.
  13. Massie BM, Carson PE, McMurray JJ et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359 (23):2456–2467.
  14. Cleland JG, Tendera M, Adamus J et al. PEP-CHF Investigators The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27 (19):2338–2345.
  15. Pitt B, Zannad F, Remme WJ et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341 (10):709–717.
  16. Pitt B, Remme W, Zannad F et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348 (14):1309–1321.
  17. Laviades C, Varo N, Fernandez J et al. Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation. 1998;98 (6):535–540.
  18. Gardin J, Dabestini A, Takenaka K et al. Effect of imaging view and sample volume location on evaluation of mitral flow velocity by pulsed Doppler echocardiography. Am J Cardiol. 1986;57 (15):1335–1339.
  19. Paulus WJ, Tschope C, Sanderson JE et al. How to diagnose diastolic heart fai­lure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28 (20):2539–2550.
  20. Rivas-Gotz C, Manolios M, Thohan V, Nagueh SF. Impact of left ventricular ejection fraction on estimation of left ventricular filling pressures using tissue Doppler and flow propagation velocity. Am J Cardiol. 2003;91 (6):780–784.
  21. Nagueh S, Rao L, Soto J et al. Haemodynamic insights into effects of ischaemia and cycle length on tissue Doppler-derived mitral annulus diastolic veloxities. Clin Sci (Lond). 2004;106 (2):147–154.
  22. Bursi F, Weston SA, Redfield MM et al. Systolic and Diastolic Heart Failure in the Community. JAMA. 2006;296 (18):2209–2216.
  23. Yamada H, Goh PP, Sun JP et al. Prevalence of left ventricular diastolic dysfunction by Doppler echocardiography: clinical application of the Canadian consensus guidelines. J Am Soc Echocardiogr. 2002;15 (10 Pt 2):1238–1244.
  24. Garcia M, Thomas J, Klein A. New Doppler echocardiographic applications for the study of diastolic function. J Am Coll Cardiol. 1998;32 (4):865–875.
  25. Kodama S, Iwata K, Iwata H et al. Rapid one-step sandwich enzyme immunoassay for tissue inhibitor of metalloproteinases. An application for rheumatoid arthritis serum and plasma. J Immunol Methods. 1990;127 (1):103–108.
  26. Khanna A, Li B, Stenzel KH, Suthanthiran M. Regulation of new DNA synthesis in mammalian cells by cyclosporine. Demonstration of a transforming growth factor beta-dependent mechanism of inhibition of cell growth. Transplantation. 1994;57 (4):577–582.
  27. Melkko J, Niemi S, Risteli L, Risteli J. Radioimmunoassay of the carboxyterminal propeptide of human type I procollagen. Clin Chem. 1990;36 (7):1328–1332.
  28. Risteli J, Elomaa I, Niemi S et al. Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: a new serum marker of bone collagen degradation. Clin Chem. 1993;39 (4):635–640.
  29. Topol EJ, Traill TA, Fortuin NJ. Hypertensive hypertrophic cardiomyopathy of the elderly. N Engl J Med. 1985;312 (5):277–283.
  30. Grossman W. Diastolic dysfunction in congestive heart failure. N Engl J Med. 1991;325 (22):1557–1564.
  31. Schwartzkopff B, Boerrigter G, Koestering M, Mundhenke M. Regression of interstitial fibrosis by chronic treatment with ACE-inhibitors in patients with hypertensive heart disease. Circulation. 1998;98: Abstr. 4154.
  32. Мареев В. Ю., Овчинников А. Г., Агеев Ф. Т., Беленков Ю. Н.. Влияние ингибиторов АПФ и антагонистов рецепторов к ангиотензину-II на диастолическую функцию левого желудочка у пациентов с относительно сохранной систолической функцией левого желудочка: результаты исследования «Периндоприл, ИРбесартан и АмлодипиН у болЬных с ХСН и сохраненной систолической функцией левого желудочка (ПИРАНЬя). Журнал Сердечная Недостаточность. 2005;6 (1):4–14.
  33. Kawano H, Do Y, Kawano Y et al. Angiotensin II has multiple profibrotic effects in human cardiac fibroblast. Circulation. 2000;101 (10):1130–1137.
  34. Warnecke C, Kaup D, Marienfeld U et al. Adenovirus-mediated overexpression and stimulation of the human angiotensin II type 2 receptor in porcine cardiac fibroblasts does not modulate proliferation, collagen I mRNA expression and ERK1 / ERK2 activity, but inhibits protein tyrosine phosphatases. J Mol Med. 2001;79 (9):510–521.
  35. Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res. 1998;83 (12):1182–1191.
  36. Ohkubo N, Matsubara H, Nozawa Y et al. Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation. 1997;96 (11):3954–3962.
  37. Tsutsumi H, Matsubara H, Ohkubo N et al. Angiotensin type 2 receptor is upregulated in human heart with interstitial fibrosis, and cardiac fibroblasts are the major cell type for its expression. Circ Res. 1998;83 (10):1035–1046.
  38. Menard J, Campbell DJ, Azizi M, Gonzales MF. Synergistic effects of ACE inhibition and Ang II antagonism on blood pressure, cardiac weight, and renin in spontaneously hypertensive rats. Circulation. 1997;96 (9):3072–3078.
  39. Nunez E, Hosoya K, Susic D, Frohlich ED. Enalapril and losartan reduced cardiac mass and improved coronary hemodynamics in SHR. Hypertension. 1997 Jan; 29 (1 Pt 2):519–524.
  40. Richer C, Bruneval P, Menard J, Giudicelli J F. Additive effects of enalapril and losartan in (mREN-2) 27 transgenic rats. Hypertension. 1998; 31 (2): 692–698.
  41. Kim Sh, Zhan Yu, Izumi Ya, Iwao H. Cardiovascular effects of combination of perindopril, candesartan, and amlodipine in hypertensive rats. Hypertension. 2000;35 (3):769–774.
  42. Avanza A, Aourar L, Mill J. Reduction in left ventricular hypertrophy in hypertensive patients treated with enalapril, losartan or the combination of enalapril and losartan. Arq Bras Cardiol. 2000;74 (2):103–117.
  43. Кастанаян А. А., Неласов Н. Ю., Старикова Н. Н. и др. Лечение диастолической дисфункции левого желудочка при артериальной гипертензии: эффективность комбинированной терапии лозартаном и эналаприлом по сравнению с монотерапией лозартаном. Сердечная недостаточность. 2001;2 (4):160–163.
  44. Anan F, Takahashi N, Ooie T et al. Effects of valsartan and perindopril combination therapy on left ventricular hypertrophy and aortic arterial stiffness in patients with essential hypertension. Eur J Clin Pharmacol. 2005;61 (5-6):353–359.
  45. Овчинников А. Г, Сербул В. М, Агеев Ф. Т. Влияние блокаторов ренин-ангиотензивной системы на гипертрофию левого желудочка и биохимические марке­ры баланса коллагена у больных с гипертонической гипертрофией. Тер. архив. 2009;81 (5):64–70.
  46. Okubo S, Niimura F, Nishimura H et al. Angiotensin-independent mechanism for aldosterone synthesis during chronic extracellular fluid volume depletion. J Clin Invest. 1997;99 (5):855–860.
  47. Diez J, Laviades C, Mayor G et al. Increased serum concentrations of procollagen peptides in essential hypertension: relation to cardiac alterations. Circulation. 1995;91 (5):1450–1456.
  48. Diez J, Panizo A, Gil MJ et al. Serum markers of collagen type I metabolism in spontaneously hypertensive rates: relation to myocardial fibrosis. Circulation. 1996;93 (5):1026–1032.
  49. Овчинников А. Г., Агеев Ф. Т. Ультразвуковое исследование в оценке диастолического давления в левом желудочке. Журнал Сердечная недостаточность. 2009;10 (4):221–236.
  50. Hirono O, Fatema K, Nitobe J et al. Long-term effects of benidipine hydrochloride on severe left ventricular hypertrophy and collagen metabolism in patients with essential hypertension. J Cardiol. 2002;39 (4):195–204.
  51. Li-Saw-Hee FL, Edmunds E, Blann AD et al. Matrix metalloproteinase-9 and tissue inhibitor metalloproteinase-1 levels in essential hypertension. Relationship to left ventricular mass and anti-hypertensive therapy. Int J Cardiol. 2000;75 (1):43–47.
  52. Iwanaga Y, Aoyama T, Kihara Y et al. Excessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats. J Am Coll Cardiol. 2002;39 (8):1384–1391.
  53. Hein S, Gaasch WH, Schaper J. Giant molecule titin and myocardial stiffness. Circulation. 2002;106 (11):1302–1304.
  54. Bloor C, Nimmo L, McKirnan M et al. Increased gene expression of plasminogen activators and inhibitors in left ventricular hypertrophy. Mol Cell Biochem. 1997;176 (1-2):265–271.
  55. Lopes B, Gonzalez A, Varo N et al. Biochemical assessment of myocardial fibrosis in hypertensive heart disease. Hypertension. 2001;38 (5):1222–1226.
  56. Zannad F, Alla F, Dousset B et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure. Insights from Randomized Aldactone Evaluation Study (RALES). Circulation. 2000;102 (22):2700–2706.
  57. Kuwahara F, Kai H, Tokuda K et al. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106 (1):130–135.
  58. Sun Y, Zhang J, Lu L et al. Aldosterone-induced inflammation in the rat heart: role of oxidative stress. Am J Pathol. 2002;161 (5):1773–1781.
  59. Querejeta R, Varo N, Lopez B et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation. 2000;101 (14):1729–1735.
  60. Diez J, Querejeta R, Lopes B et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002;105 (21):2512–2517.
  61. Lopez B, Querejeta R, Varo N et al. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation. 2001;104 (3):286–291.
  62. Weber K, Sun Y, Campbell S. Structural remodeling of the heart by fibrous tissue: Role of circulating hormones and locally produced peptides. Eur Heart J. 1995;16 (Suppl N):12–18.
  63. Brilla C, Funck R, Rupp H. Lisinopril mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102 (12):1388–1393.
  64. Агеев Ф. Т, Сербул В. М, Овчинников А. Г. Влияние ингибитора АПФ эналаприла и антагониста рецепторов к А-II кандесартана, а также их комбинации на индекс массы миокарда ЛЖ у пациентов с гипертонической гипертрофией ЛЖ. Журнал Сердечная Недостаточность. 2007;8 (2):60–68.
  65. Freer RJ, Pappano AJ, Peach MJ et al. Mechanism for the postive inotropic effect of angiotensin II on isolated cardiac muscle. Circ Res. 1976;39 (2):178–183.
  66. Mottram M, Haluska B, Leano R et al. Effect of aldosterone antagonism on myocardial dysfunction in hypertensive patients with diastolic heart failure. Circulation. 2004;110 (5):558–565.
  67. Bergstrom A, Andersson B, Edner M et al. Effect of carvedilol on diastolic function in patients with diastolic heart failure and preserved systolic function. Results of the Swedish Doppler-echocardiography study (SWEDIC). Eur J Heart Fail. 2004;6 (4):453–461.
  68. Fung J, Yu C, Yip G et al. Effect of beta blockade (carvedilol or metoprolol) on activation of the renin-angiotensin-aldosterone system and natriuretic peptides in chronic heart failure. Am J Cardiol. 2003;92 (4):406–410.
  69. Rousseau M, Gurne O, van Eyll C et al. Effects of benazeprilat on left ventricular systolic and diastolic function and neurohumoral status in patients with ischemic heart disease. Circulation. 1990;81 (2 Suppl):III123–129.
  70. Braunschweig F, Fahleitner-Pammer A, Mangiavacci M et al. Correlation between serial measurements of N-terminal pro brain natriuretic peptide and ambulatory cardiac filling pressures in outpatients with chronic heart failure. Eur J Heart Fail. 2006;8 (8):797–803.
Svirida O. N., Ovchinnikov A. G., Ageev F. T. Influence of candesartan and its combination with spironolactone on left ventricular diastolic function and level of collagen balance’s biochemical markers in patients with chronic heart failure and preserved left ventricular systolic function. Russian Heart Failure Journal. 2010;11(5):263-275.

To access this material please log in or register

Register Authorize
Ru En