Russian Heart Failure Journal 2009year Myocardial fibrosis in patients with systolic and diastolic chronic heart failure 

To access this material please log in or register

Register Authorize

Myocardial fibrosis in patients with systolic and diastolic chronic heart failure 

Solomakhina N.I., Varshavsky V.A., Popova O.P.



Urgency. Peculiarities of myocardial, particularly interstitial structure in patients with systolic (S-CHF) and diastolic CHF (D-CHF) are an urgent and unsolved problem. Aim. To compare severity and distribution of fibrosis in the myocardium of patients with S-CHF and D-CHF. Materials and methods. The present study investigated the myocardium (autopsy material) of the LV anterior wall in 17 elderly and senile patients (65 to 93 years old) admitted for decompensation and died from progressive CHF, including 8 patients with S-CHF and 9 patients with D-CHF. Control group (CG) consisted of 6 patients without signs of CHF who died from acute disturbance of cerebral circulation. At the first step, severity of fibrosis was evaluated using azan staining by Heidenhain and picrofucsin staining by Van-Gieson of deparaffinated myocardial slices. At the second step, I and III type collagen content was measured using immunohistochemical examination of the myocardium. Results were evaluated by a morphologist using a semi-quantitative scale in a blinded manner. Results. Interstitial fibrosis was significantly more pronounced in the myocardium of patients with D-CHF than in the myocardium of patients with S-CHF; collagen content was significantly higher in the myocardium of patients with D-CHF than in the myocardium of patients with S-CHF. Opposite disproportions were found in the content of I and III type collagen and significant differences in preferential localization of these collagen types.
  1. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000; 101 (25):2981–2988.
  2. Weber KT. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation. 1997; 96 (11):4065–4082.
  3. Gunja-Smith Z, Morales AR, Romanelli R, Woessner JF Jr. Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links. Am J Pathol. 1996; 148 (5):1639–1648.
  4. Burlew BS, Weber KT. Cardiac fibrosis as a cause of diastolic dysfunction. Herz. 2002; 27 (2):92–98.
  5. Mays PK, Bishop JE, Laurent GJ. Age-related changes in the proportion of types I and III collagen. Mech Ageing Dev. 1988; 45 (3):203‑212.
  6. Medugorac I. Characterization of intramuscular collagen in the mammalian left ventricle. Basic Res Cardiol. 1982; 77 (6):589‑598.
  7. Mukherjee D, Sen S. Collagen phenotypes during development and regression of myocardial hypertrophy in spontaneously hypertensive rats. Circ Res. 1990; 67 (6):1474–1480.
  8. Mukherjee D, Sen S. Alteration of collagen phenotypes in ischemic cardiomyopathy. J Clin Invest. 1991; 88 (4):1141–1146.
  9. Mukherjee D, Sen S. Alteration of cardiac collagen phenotypes in hypertensive hypertrophy: role of blood pressure. J Mol Cell Cardiol. 1993; 25 (2):185‑196.
  10. Weber KT, Janicki JS, Shroff SG et al. Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res. 1988; 62 (4):757‑765.
  11. Weber KT. Fibrosis and hypertensive heart disease. Curr Opin Cardiol. 2000; 15 (4):264‑272.
  12. Cuspidi C, Ciulla M, Zanchetti A. Hypertensive myocardial fibrosis. Nephrol Dial Transplant. 2006; 21 (1):20–23.
  13. Pan J, Fukuda K, Kodama H et al. Involvement of gp130‑mediated signaling in pressure overload-induced activation of the JAK / STAT pathway in rodent heart. Heart Vessels. 1998; 13 (4):199‑208.
  14. Nicoletti A, Michel JB. Cardiac fibrosis and inflammation: interaction with hemodynamic and hormonal factors. ardiovasc Res. 1999; 41 (3):532‑543.
  15. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999; 79 (1):215‑262.
  16. Sabbah HN, Sharov VG, Lesch M, Goldstein S. Progression of heart failure: a role for interstitial fibrosis. Mol Cell Biochem. 1995; 147 (1–2):29–34.
  17. Schnee JM, Hsueh WA. Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc Res. 2000; 46 (2):264‑268.
  18. Weber KТ. Cardiac interstitium. In: Poole-Wilson P, Colucci W, Massie B, Chatterjee K, Coats A, eds. Heart Failure. New York, NY: Churchill Livingstone; 1997:13–31.
  19. Olivetti G, Melissari M, Balbi T et al. Myocite cellular hypertrophy is responsible for ventricular remodelling in the hypertrophic heart of middle aged individuals in the absence of heart failure. Cardiovasc Res. 1994; 28 (8):1199–208.
  20. Rossi MA. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens. 1998; 16 (7):1031–1041.
  21. Ciulla MM, Paliotti R, Hess DB et al. Echocardiographic patterns of myocardial fibrosis in hypertensive patients: endomyocardial biopsy versus ultrasonic tissue characterization. J Am Soc Echocardiogr. 1997; 10 (6):657‑664.
  22. van Heerebeek L, Borbély A, Niessen HW et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation. 2006; 113 (16):1966–1973.
  23. López B, González A, Querejeta R et al. Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J Am Coll Cardiol. 2006; 48 (1):89–96.
  24. Swedberg K, Cleland J, Dargie H et al. Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. Eur Heart J. 2005; 26 (11):1115–1140.
  25. Diez J, Lopez B, Gonzales A, Querejeta R. Clinical aspects of hypertensive myocardial fibrosis. Curr Opin Cardiol. 2001; 16 (6):328‑335.
  26. Bishop JE, Laurent GJ. Collagen turnover and its regulation in the normal and hypertrophying heart. Eur Heart J 1995; 16 (Suppl. C):38–44.
  27. Woolley DE. Mammalian collagenases. In: Piez K, Reddi AH, editors. Extracellular matrix biochemistry. New York: Elsevier; 1984. pp. 119‑158
  28. Takahashi S, Barry AC, Factor SM. Collagen degradation in ischaemic rat hearts. Biochem J. 1990; 265 (1):233‑241.
  29. Brower GL, Gardner JD, Forman MF et al. The relationship between myocardial extracellular matrix remodeling and ventricular function. Eur J Cardiothorac Surg. 2006; 30 (4):604‑610.
  30. Brower GL, Henegar JR, Janicki JS. Temporal evaluation of left ventricular remodeling and function in rats with chronic volume overload. Am J Physiol. 1996; 271 (5 Pt 2):H2071-2078.
  31. Martos R, Baugh J, Ledwidge M et al. Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation. 2007; 115 (7):888‑895.
  32. Robinson TF, Geraci MA, Sonnenblick EH, Factor SM. Coiled perimysial fibers of papillary muscle in rat heart: morphology, distribution, and changes in configuration. Circ Res. 1988; 63 (3):577‑592.
  33. Oh JK, Hatle L, Tajik AJ, Little WC. Diastolic heart failure can be diagnosed by comprehensive two-dimensional and Doppler echocardiography. J Am Coll Cardiol. 2006; 47 (3):500‑506.
  34. Zile M, Baicu CF, Gaasch WH. Diastolic heart failure-abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004; 350 (19):1953–1959.
  35. Diez J, Panizo A, Gil MJ et al. Serum markers of collagen type I metabolism in spontaneously hypertensive rates: relation to myocardial fibrosis. Circulation. 1996; 93 (5):1026–1032.
  36. Brilla CG, Matsubara L, Weber KT. Advanced hypertensive heart disease in spontaneously hypertensive rats. Lisinopril-mediated regression of myocardial fibrosis. Hypertension. 1996; 28 (2):269‑275.
  37. Querejeta R, Lopez B, Gonzalez A et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation. 2004; 110 (10):1263–1268.
  38. Brilla C, Funck R, Rupp H. Lisinopril mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000; 102 (12):1388–1393.
  39. Diez J, Querejeta R, Lopes B et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002; 105 (21):2512–2517.
  40. Liu J, Masurekar MR, Vatner DE et al. Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart. Am J Physiol Heart Circ Physiol. 2003; 285 (6):H2587-2591.
  41. Shimizu M, Umeda K, Sugihara N et al. Collagen remodelling in myocardia of patients with diabetes. J Clin Pathol. 1993; 46 (1):32–36.
  42. Burgess ML, Buggy J, Price RL et al. Exercise- and hypertension-induced collagen changes are related to left ventricular function in rat hearts. Am J Physiol. 1996; 270 (1 Pt 2):H151-159.
  43. Marijianowski MM, Teeling P, Mann J, Becker AE. Dilated cardiomyopathy is associated with an increase in the type I / type III collagen ratio: a quantitative assessment. J Am Coll Cardiol. 1995; 25 (6):1263–1272.
  44. Wei S, Chow LT, Shum IO et al. Left and right ventricular collagen type I / III ratios and remodeling post-myocardial infarction. J Card Fail. 1999; 5 (2):117‑126.
  45. Kass DA, Bronzwaer JG, Paulus WJ. What mechanisms underlie diastolic dysfunction in heart failure? Circ Res. 2004; 94 (12):1533–1542.
  46. Pearlman ES, Weber K, Janicki JS et al. Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab Invest. 1982; 46 (2):158‑164.
  47. Redfield M. Understanding «diastolic» heart failure. N Engl J Med. 2004; 350 (19):1930–1931.

To access this material please log in or register

Register Authorize
Ru En