Russian Heart Failure Journal 2009year Effect of renin-angiotensin system blockers on left ventricular hypertrophy and biochemical markers of collagen balance in patients with hypertensive hypertrophy

To access this material please log in or register

Register Authorize

Effect of renin-angiotensin system blockers on left ventricular hypertrophy and biochemical markers of collagen balance in patients with hypertensive hypertrophy

Ovchinnikov A. G., Serbul V. M., Ageev F. T.



Urgency. Left ventricular hypertrophy (LVH) is an important risk factor of cardiovascular complications in patients with AH; hypertrophy regression is associated with reduced risk of these complications and improved prognosis. Aim. Evaluating the effect of the ACEI enalapril, the angiotensin receptor antagonist (ARA) candesartan and their combination on LVH and levels of biochemical markers for collagen balance in patients with hypertensive LVH. Materials and methods. 66 patients with LVH were allocated to the ARA candesartan 8-16 mg/day treatment group (n=33) or the ACEI enalapril 10–20 mg/day treatment group (n=33). In case of effective intial hypotensive response to the therapy, the therapy was administered for 6 months. Otherwise the other study drug was added to the existing therapy with the renin-angiotensin system (RAS) antagonist 2 months after the onset of original treatment (candesartan 8-16 mg/day to enalapril and enalapril 10-20 mg/day to candesartan). Myocardial mass index (MMI, by two-dimentional echoCG) and blood levels of matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) were measured at baseline and at 6 months. Results. By the end of study, the decrease in LV MMI reached 13.9% (p<0.05 vs. baseline) in the group of effective candesartan therapy, while in the group of effective enalapril therapy, the decrease was only 1.5% (р<0.01 vs. effective candesartan therapy). In the group of failed hypotensive therapy, the decrease in LV MMI was minimal at 2 months (1.8%); however addition of the second RAS antagonist allowed subsequent achievement of a significant decrease in LV MMI (5.1%). Groups of effective initial therapy showed only a tendency to increase in MMP-1, while the group of combination therapy had a significant increase in MMP-1. Levels of TIMP-1 remained unchanged in all groups throughout the study. Therefore candesartan exerted a more pronounced effect on LVH than enalapril in patients with hypertensive LVH. When a RAS antagonist does not exert a sufficient hypotensive effect, addition of another RAS antagonist results in a significant decrease in LV MMI. Furthermore a significant antifibrotic effect is only possible in a combination treatment with two RAS antagonists.
  1. Koren M, Devereux R, Casale P. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991; 114 (5):345‑352.
  2. Verdecchia P, Shillaci G, Borgioni C et al. Prognostic significance of serial changes in left ventricular mass in essential hypertension. Circulation. 1998; 97 (1):48–54.
  3. Schmieder R, Martus P, Klingbeil A. Reversal of left ventricular hypertrophy in essential hypertension: meta-analysis of randomized studies. JAMA. 1996; 275 (19):1507–1513.
  4. Urata H, Nishimura H, Ganten D. Mechanisms of angiotensin II formation in humans. Eur Heart J. 1995; 16 (Suppl N):79–85.
  5. van den Meiracker A, Man in’t Veld A, Admiraal P et al. Partial escape of angiotensin converting enzyme (ACE) inhibition during prolonged ACE inhibitor treatment: Does it exist and does it affect the antihypertensive response? J Hypertens. 1992; 10 (8):803‑812.
  6. Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res. 1998; 83 (12):1182–1191.
  7. Ohkubo N, Matsubara H, Nozawa Y et al. Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation. 1997; 96 (11):3954–3962.
  8. Tsutsumi H, Matsubara H, Ohkubo N et al. Angiotensin type 2 receptor is upregulated in human heart with interstitial fibrosis, and cardiac fibroblasts are the major cell type for its expression. Circ Res. 1998; 83 (10):1035–1046.
  9. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium: fibrosis and rennin-angiotensin-aldosteron system. Circulation. 1991; 83 (6):1849–1865.
  10. Овчинников А., Габрусенко С., Сербул В. и др. Состояние диастолической функции при гипертрофии левого желудочка различной этиологии. Сборник тезисов Ежегодной всероссийской конференции Общества специалистов по сердечной недостаточности, Москва, – декабрь 2004 г.
  11. Овчинников А., Сербул В., Габрусенко С. и др. Содержание мозгового натрийуретического пептида у пациентов с гипертрофией левого желудочка различной этиологии. Сборник тезисов I Конгресса (VII Ежегодной всероссийской конференции Общества специалистов по сердечной недостаточности) «Сердечная недостаточность 2006», Москва, – декабрь 2006 г.
  12. Tikkanen I, Omvik P, Jensen HA. Comparison of the angiotensin II antagonist losartan with the angiotensin converting enzyme inhibitor enalapril in patients with essential hypertension. J Hypertens. 1995; 13 (11):1343–1351.
  13. Ruff D., Gazdick L., Berman R., et al. Comparative effects of combination drug therapy regimens commencing with either losartan potassium, an angiotensin II receptor antagonist, or enalapril maleate for the treatment of severe hypertension. J Hypertens. 1996 Feb; 14 (2):263‑270.
  14. Laviades C, Varo N, Fernández J et al. Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation. 1998; 98 (6):535‑540.
  15. Díez J, Laviades C, Mayor G et al. Increased serum concentrations of procollagen peptides in essential hypertension: relation to cardiac alterations. Circulation. 1995; 91 (5):1450–1456.
  16. Díez J, Panizo A, Gil MJ et al. Serum markers of collagen type I metabolism in spontaneously hypertensive rates: relation to myocardial fibrosis. Circulation. 1996; 93 (5):1026–1032.
  17. Woessner JF Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991; 5 (8):2145–2154.
  18. Laurent GJ. Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol. 1987; 252 (1 Pt 1):C1-9.
  19. Feldman A, Li Y, McTiernan C. Matrix metalloproteinases in pathophysiology and treatment of heart failure. Lancet. 2001; 357 (9257):654‑655.
  20. Spinale F. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res. 2002; 90 (5):520‑530.
  21. Weber K, Anversa P, Armstrong P et al. Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol. 1992; 20 (1):3–16.
  22. ONTARGET Investigators. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008; 358 (15):1547–1559.
  23. Yoshida J, Yamamoto K, Nishikawa N et al. Angiotensin converting enzyme inhibitor and angiotensin II type I receptor antagonist differently modulate extracellular matrix regulatory system in diastolic heart failure. J Hypertens 2005; 23:393‑400.
  24. Menard J, Campbell DJ, Azizi M, Gonzales MF. Synergistic effects of ACE inhibition and Ang II antagonism on blood pressure, cardiac weight, and renin in spontaneously hypertensive rats. Circulation. 1997; 96 (9):3072–3078.
  25. Nunez E, Hosoya K, Susik D, Frohlich D. Enalapril and losartan reduced mass and improved coronary hemodynamics in SHR. Hypertension. 1997; 29 (1 Pt 2):519‑524.
  26. Kim Sh, Zhan Yu, Izumi Ya, Iwao H. Cardiovascular effects of combination of perindopril, candesartan, and amlodipine in hypertensive rats. Hypertension. 2000; 35 (3):769‑774.
  27. Richer C, Bruneval P, Menard J, Giudicelli J F. Additive effects of enalapril and losartan in (mREN-2) 27 transgenic rats. Hypertension. 1998; 31 (2): 692‑698.
  28. Avanza A, Aourar L, Mill J. Reduction in left ventricular hypertrophy in hypertensive patients treated with enalapril, losartan or the combination of enalapril and losartan. Arq Bras Cardiol. 2000; 74 (2):103‑117.
  29. Anan F, Takahashi N, Ooie T et al. Effects of valsartan and perindopril combination therapy on left ventricular hypertrophy and aortic arterial stiffness in patients with essential hypertension. Eur J Clin Pharmacol. 2005; 61 (5–6):353‑359.
  30. Ganau A, Devereux RB, Roman MJ et al. Patterns of left ventricular hypertrophy and geometric remodelling in essential hypertension J Am Coll Cardiol. 1992; 19 (7):1550–1558.
  31. Schiller NB, Shah PM, Crawford M et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr. 1989; 2 (5):358‑367.
  32. Lindsay M., Maxwell P., Dunn G. TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension. 2002; 40 (2):136‑141.
  33. Mancia G, De Backer G, Dominiczak A et al. 2007 Guidelines for the Management of Arterial Hypertension. The Task Force for the management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of cardiology (ESC). J Hypertens. 2007; 25 (6):1105–1187.
  34. Linz W, Scholkens B. A specific B2‑bradykinin receptor antagonist HOE 140 abolishes the antihypertrophic effect of ramipril. Br J Pharmacol. 1992; 105 (4):771‑772.
  35. Kaplan N. Systemic hypertension: mechanism and diagnosis. In: Zippes D, Libby P, Bonow R, Braunwald E. (eds): Braunwald’s heart disease: a textbook of cardiovascular medicine (7th ed.). Elsevier Saunders. 2005; pp. 959‑87.
  36. Nussberger J, Brunner D, Waeber B et al. Specific measurement of angiotensin metabolites and in vitro generated angiotensin II in plasma. Hypertension. 1986; 8 (6):476‑482.
  37. Mukawa H, Toki Y, Shimauchi A et al. Possible involvement of angiotensin II type 2 receptor in antihypertrophic effects exerted by the type 1 receptor antagonist in hypertensive rats. Eur Heart J. 1997; 18 (Suppl):445.
  38. Villatico S, Campbell V, Rizzo F et al. Anthihypertensive therapy with losartan and fosinopril: efficacy in left ventricular hypertrophy regression. Am J Hypertens. 1998; 11:125A.
  39. Cuspidi C, Muiesan ML, Valagussa L et al. Comparative effects of candesartan and enalapril on left ventricular hypertrophy in patients with essential hypertension: the candesartan assessment in the treatment of cardiac hypertrophy (CATCH) study. J Hypertens. 2002; 20 (11):2293–2300.
  40. Gosse P, Sheridan DJ, Zannad F et al. Regression of left ventricular hypertrophy in hypertensive patients treated with indapamide SR 1.5 mg versus enalapril 20 mg: the LIVE study. J Hypertens. 2000; 18 (10):1465–1475.
  41. Gottdiener J, Diamond J, Phillips R. Hypertension: impact of echocardiographic data on the mechanism of hypertension, treatment options, prognosis, and assessment of therapy. In: Otto C. (ed): The practice of clinical echocardiography (2nd ed.). W. B. Saunders Company 2002; pp. 705‑738.
  42. Lopes B, Gonzalez A, Varo N et al. Biochemical assessment of myocardial fibrosis in hypertensive heart disease. Hypertension. 2001; 38 (5):1222–1226.
  43. Katz A. The heart as a muscular pump. In: Katz A. Physiology of the heart. (3d ed.). Lippincott Williams & Wilkins 2001; pp. 398‑417.
  44. Yip G, Zhang Y, Fung J et al. Left ventricular long axis function in diastolic heart failure is reduced in both diastole and systole: time for a redefinition? Heart. 2002; 87 (2):121‑125.
  45. Freer RJ, Pappano AJ, Peach MJ et al. Mechanism for the postive inotropic effect of angiotensin II on isolated cardiac muscle. Circ Res. 1976; 39 (2):178‑183.
  46. Giatras I, Lau J, Levey AS. Effect of angiotensin-converting enzyme inhibitors on the progression of nondiabetic renal disease: a meta-analysis of randomized trials. Angiotensin-Converting-Enzyme Inhibition and Progressive Renal Disease Study Group. Ann Intern Med. 1997; 127 (5):337‑345.
  47. Ruggenenti P, Perna A, Gherardi G et al. Renal function and requirement for dialysis in chronic nephropathy patients on long-term ramipril: REIN follow-up trial. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). Ramipril Efficacy in Nephropathy. Lancet. 1998; 352 (9136):1252–1256.
  48. Glennon P, Sugden P, Poole-Wilson P. Cellular mechanisms of cardiac hypertrophy. Br Heart J. 1995; 73 (6):496‑499.
  49. Lopez B, Querejeta R, Varo N et al. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation. 2001; 104 (3):286‑291.
  50. Brilla C, Funck R, Rupp H. Lisinopril mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000; 102 (12):1388–1393.
  51. Frank JS, Langer GA. The myocardial interstitium: Its structure and its role in ionic exchange. J Cell Biol. 1974; 60 (3):586‑601.
  52. Cheitlin M, Rubinowitz M, McAllister H et al. The distribution of fibrosis in the left ventricle in congenital aortic stenosis and coarctation of the aorta. Circulation. 1980; 62 (4):823‑830.
  53. Oldershaw P, Brooksby I, Davies M et al. Correlations of fibrosis in endomyocardial biopsies from patients with aortic valve disease. Br Heart J. 1980; 44 (6):609‑611.
  54. Chapman D, Weber K, Eghbali M. Regulation of fibrillar collagen types I and III and basement membrane type IV collagen gene expression in pressure overloaded rat myocardium. Circ Res. 1990; 67 (4):787‑794.
  55. Brilla C, Maisch B. Regulation of the structural remodelling of the myocardium: from hypertrophy to heart failure. Eur Heart J. 1994; 15 (Suppl D):45–52.
  56. Weber K, Clarck W, Janicki J et al. Physiologic versus pathologic hypertrophy and the pressure-overloaded myocardium. J Cardiovasc Pharmacol. 1987; 10 (Suppl 6):S37-50.

To access this material please log in or register

Register Authorize
Ru En