Russian Heart Failure Journal 2009year Methabolic approach to the CHF treatment

To access this material please log in or register

Register Authorize

Methabolic approach to the CHF treatment

Gilyarevsky S. R



In recent years wide experience of treatment with metabolite modulators, namely trimetazidine in CHF patients and patients with left ventricular dysfunction was accumulated. At the same time only few relatively small randomized clinical studies were performed so far. Results of these studies were mostly positive. Adding trimethazidine to the treatment of the CHF patients with both ischemic and non-ischemic etiology of CHF causes additional beneficial effect on LV function and clinical symptoms. At the absence of clinical studies aimed on evaluation of long term prognosis of such a treatment choice of this treatment methods most probably will be lay on doctor’s own decision.
  1. Sliwa K, Damasceno A, Mayosi BM. Epidemiology and etiology of cardiomyopathy in Africa. Circulation. 2005; 112 (23):3577–3583.
  2. Rosamond W, Flegal K, Furie K et al. Heart Disease and Stroke Statistics 2008 Update: A Report Fr om the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008; 117 (4):e25-146.
  3. Stewart S, MacIntyre K, Hole DJ et al. More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail. 2001; 3 (3):315‑322.
  4. Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation. 2007; 116 (4):434‑448.
  5. Feldman AM, Oren RM, Abraham WT et al. Low-dose oral enoximone enhances the ability to wean patients with ultra-advanced heart failure fr om intravenous inotropic support: results of the oral enoximone in intravenous inotrope-dependent subjects trial. Am Heart J. 2007; 154 (5):861‑869.
  6. Fox K, Ford I, Steg PG et al. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet. 2008; 372 (9641):807‑816.
  7. Kjekshus J, Apetrei E, Barrios V et al. Rosuvastatin in Older Patients with Systolic Heart Failure. N Engl J Med. 2007; 357 (22):2248–2261.
  8. Fragasso G, Salerno A, Spoladore R et al. Metabolic therapy of heart failure. Curr Pharm Des. 2008; 14 (25):2582–2591.
  9. Suga H. Ventricular energetics. Physiol Rev. 1990; 70 (2):247‑277.
  10. Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004; 95 (2):135‑145.
  11. Neubauer S. The failing heart: an engine out of fuel. N Engl J Med. 2007; 356 (11):1140–1151.
  12. Krentz AJ, Nattrass M. Insulin resistance: a multifaceted metabolic syndrome: insights gained using a low-dose insulin infusion technique. Diabet Med. 1996; 13 (1):30–39.
  13. Ungar I, Gilbert M, Siegel A et al. Studies on myocardial metabolism. IV. Myocardial metabolism in diabetes. Am J Med. 1955; 18 (3):385‑396.
  14. Opie LH. Effect of fatty acids on contractility and rhythm of the heart. Nature. 1970; 227 (5262):1055–1056.
  15. Murray AJ, Anderson RE, Watson GC et al. Uncoupling proteins in human heart. Lancet. 2004; 364 (9447):1786–1788.
  16. Opie LH. The metabolic vicious cycle in heart failure. Lancet. 2004; 364 (9447):1733–1734.
  17. MacDonald MR, Petrie MC, Hawkins NM et al. Diabetes, left ventricular systolic dysfunction, and chronic heart failure. Eur Heart J. 2008; 29 (10):1224–1240.
  18. Marshall JD, Bronson RT, Collin GB et al. New Alstrom syndrome phenotypes based on the evaluation of 182 cases. Arch Intern Med. 2005; 165 (6):675‑683.
  19. Joy T, Cao H, Black G et al. Alstrom syndrome (OMIM 203800): a case report and literature review. Orphanet J Rare Dis. 2007 Dec 21; 2:49.
  20. Elbedour K, Zucker N, Zalzstein E et al. Cardiac abnormalities in the Bardet-Biedl syndrome: echocardiographic studies of 22 patients. Am J Med Genet. 1994; 52 (2):164‑169.
  21. Smith JC, McDonnell B, Retallick C et al. Is arterial stiffening in Alstrom syndrome linked to the development of cardiomyopathy? Eur J Clin Invest. 2007; 37 (2):99‑105.
  22. Masoudi FA, Inzucchi SE. Diabetes mellitus and heart failure: epidemiology, mechanisms, and pharmacotherapy. Am J Cardiol. 2007 Feb 19; 99 (4A):113B-132B
  23. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004; 25 (4):543‑567.
  24. Marwick T. H. Diabetic heart disease. Heart. 2006; 92 (3):296‑300.
  25. Banerjee S, Peterson LR. Myocardial metabolism and cardiac performance in obesity and insulin resistance. Curr Cardiol Rep. 2007; 9 (2):143‑149.
  26. Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res. 2006; 98 (5):596‑605.
  27. Diamant M, Lamb HJ, Groeneveld Y et al. Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol. 2003; 42 (2):328‑335.
  28. Picano E. Diabetic cardiomyopathy: the importance of being earliest. J Am Coll Cardiol. 2003; 42 (3):454‑457.
  29. Galderisi M. Diastolic dysfunction and diabetic cardiomyopathy: evaluation by Doppler echocardiography. J Am Coll Cardiol. 2006; 48 (8):1548–1551.
  30. Suskin N, McKelvie RS, Burns RJ et al. Glucose and insulin abnormalities relate to functional capacity in patients with congestive heart failure. Eur Heart J. 2000; 21 (16):1368–1375.
  31. Paolisso G, Tagliamonte MR, Rizzo MR et al. Prognostic importance of insulin-mediated glucose uptake in aged patients with congestive heart failure secondary to mitral and / or aortic valve disease. Am J Cardiol. 1999; 83 (9):1338–1344.
  32. Jagasia D, Whiting J. M, Concato J et al. Effect of non-insulin-dependent diabetes mellitus on myocardial insulin responsiveness in patients with ischemic heart disease. Circulation. 2001; 103 (13):1734–1739.
  33. Utriainen T, Takala T, Luotolahti M et al. Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia. 1998; 41 (5):555‑559.
  34. Paolisso G, Gambardella A, Galzerano D et al. Total-body and myocardial substrate oxidation in congestive heart failure. Metabolism. 1994; 43 (2):174‑179.
  35. Taylor M, Wallhaus TR, Degrado TR et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6‑thia-heptadecanoic acid and [18F]FDG in Patients with Congestive Heart Failure. J Nucl Med. 2001; 42 (1):55–62.
  36. Witteles RM, Wilson Tang WH, Jamali AH et al. Insulin resistance in idiopathic dilated cardiomyopathy. A possible etiologic link. J Am Coll Cardiol. 2004; 44 (1):78–81.
  37. Amato L, Paolisso G, Cacciatore F et al. Congestive heart failure predicts the development of non-insulin-dependent diabetes mellitus in the elderly. The Osservatorio Geriatrico Regione Campania Group. Diabetes Metab. 1997; 23 (3):213‑218.
  38. Tenenbaum A, Motro M, Fisman EZ et al. Functional class in patients with heart failure is associated with the development of diabetes. Am J Med. 2003; 114 (4):271‑275.
  39. Sokos GG, Nikolaidis LA, Mankad S et al. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006; 12 (9):694‑699.
  40. Kostis JB, Sanders M. The association of heart failure with insulin resistance and the development of type 2 diabetes. Am J Hypertens. 2005; 18 (5 Pt 1):731‑737.
  41. Opie LH. The metabolic syndrome, does it exist? In Opie LH, Kasuga M, Yellon DM, eds. Diabetes at the Limits. Vol. 2. Cape Town, South Africa: University of Cape Town Press; 2006:95‑110.
  42. Wisniacki N, Taylor W, Lye M, Wilding JP. Insulin resistance and inflammatory activation in older patients with systolic and diastolic heart failure. Heart. 2005; 91 (1):32–37.
  43. Doehner W, Rauchhaus M, Godsland IF et al. Insulin resistance in moderate chronic heart failure is related to hyperleptinaemia, but not to norepinephrine or TNF-alpha. Int J Cardiol. 2002; 83 (1):73–81.
  44. Zucker IH. Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension. 2006; 48 (6):1005–1011.
  45. Eisenhofer G, Friberg P, Rundqvist B et al. ardiac sympathetic nerve function in congestive heart failure. Circulation. 1996; 93 (9):1667–1676.
  46. Opie LH, Thandroyen FT, Muller C, Bricknell OL. Adrenaline-induced «oxygen-wastage» and enzyme release from working rat heart. Effects of calcium antagonism, beta-blockade, nicotinic acid and coronary artery ligation. J Mol Cell Cardiol. 1979; 11 (10):1073–1094.
  47. Sasaoka T, Wada T, Tsuneki H. Lipid phosphatases as a possible therapeutic target in cases of type 2 diabetes and obesity. Pharmacol Ther. 2006; 112 (3):799‑809.
  48. Marangou AG, Alford FP, Ward G et al. Hormonal effects of norepinephrine on acute glucose disposal in humans: a minimal model analysis. Metabolism. 1988; 37 (9):885‑891.
  49. Paolisso G, Manzella D, Rizzo MR et al. Elevated plasma fatty acid concentrations stimulate the cardiac autonomic nervous system in healthy subjects. Am J Clin Nutr. 2000; 72 (3):723‑730.
  50. Santomauro AT, Boden G, Silva ME et al. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes. 1999; 48 (9):1836–1841.
  51. Peterson LR, Herrero P, Schechtman KB et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation. 2004; 109 (18):2191–2196.
  52. Petersen KF, Shulman GI. New insights into the pathogenesis of insulin resistance in humans using magnetic resonance spectroscopy. Obesity (Silver Spring). 2006; 14 (Suppl 1):34S-40S.
  53. Belfort R, Mandarino L, Kashyap S et al. Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes. 2005; 54 (6):1640–1648.
  54. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002; 51 (7):2005–2011.
  55. Wagenmakers AJ, van Riel NA, Frenneaux MP, Stewart PM. Integration of the metabolic and cardiovascular effects of exercise. Essays Biochem. 2006; 42:193‑210.
  56. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005; 85 (3):1093–1129.
  57. Mongillo M, John AS, Leccisotti L et al. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart. Eur J Nucl Med Mol Imaging. 2007; 34 (8):1172–1127.
  58. Knaapen P, Germans T, Knuuti J et al. Myocardial energetics and efficiency: current status of the noninvasive approach. Circulation. 2007; 115 (7):918‑927.
  59. Wilson PW. Diabetes mellitus and coronary heart disease. Endocrinol Metab Clin North Am. 2001; 30 (4):857‑881.
  60. Nikolaidis LA, Sturzu A, Stolarski C et al. The development of myocardial insulin resistance in conscious dogs with advanced dilated cardiomyopathy. Cardiovasc Res. 2004; 61 (2):297‑306.
  61. Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy: clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol. 2008; 51 (2):93‑102.
  62. Boehm EA, Jones BE, Radda GK et al. Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart. Am J Physiol Heart Circ Physiol. 2001; 280 (3):H977-983.
  63. Korvald C, Elvenes OP, Myrmel T. Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol. 2000; 278 (4):H1345-1351.
  64. Mjos OD, Bugge-Asperheim B, Kiil F. Factors determining myocardial oxygen consumption (MVO 2) during elevation of aortic blood pressure. 2. Relation between MVO 2 and free fatty acids. Cardiovasc Res. 1972; 6 (1):23–27.
  65. Chandler MP, Kerner J, Huang H et al. Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation. Am J Physiol Heart Circ Physiol. 2004; 287 (4):H1538-1543.
  66. Roden M, Price T. B, Perseghin G et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996; 97 (12):2859–2865.
  67. Shipp J, Opie LH, Challoner D. Fatty acid and glucose metabolism in the perfused heart. Nature. 1961; 189:1018–1019.
  68. Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation. 2005; 111 (21):2837–2849.
  69. Vermes E, Ducharme A, Bourassa MG et al. Enalapril reduces the incidence of diabetes in patients with chronic heart failure: insight from the Studies of Left Ventricular Dysfunction (SOLVD). Circulation. 2003; 107 (9):1291–1296.
  70. Yusuf S, Ostergren JB, Gerstein HC et al. Effects of candesartan on the development of a new diagnosis of diabetes mellitus in patients with heart failure. Circulation. 2005; 112 (1):48–53.
  71. Shao J, Iwashita N, Ikeda F et al. Beneficial effects of candesartan, an angiotensin II type 1 receptor blocker, on beta-cell function and morphology in db / db mice. Biochem Biophys Res Commun. 2006; 344 (4):1224–1233.
  72. Chu KY, Lau T, Carlsson PO, Leung PS. Angiotensin II type 1 receptor blockade improves beta-cell function and glucose tolerance in a mouse model of type 2 diabetes. Diabetes. 2006; 55 (2):367‑374.
  73. Wallhaus TR, Taylor M, DeGrado TR et al. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation. 2001; 103 (20):2441–2446.
  74. Al-Hesayen A, Azevedo ER, Floras JS et al. Selective versus nonselective beta-adrenergic receptor blockade in chronic heart failure: differential effects on myocardial energy substrate utilization. Eur J Heart Fail. 2005; 7 (4):618‑623.
  75. Cottin Y, Lhuillier I, Gilson L et al. Glucose insulin potassium infusion improves systolic function in patients with chronic ischemic cardiomyopathy. Eur J Heart Fail. 2002; 4 (2):181‑184.
  76. Cool B, Zinker B, Chiou W et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006; 3 (6):403‑416.
  77. Han SH, Quon MJ, Kim JA, Koh KK. Adiponectin and cardiovascular disease: response to therapeutic interventions. J Am Coll Cardiol. 2007; 49 (5):531‑538.
  78. Knowler WC, Barrett-Connor E, Fowler SE et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346 (6):393‑403.
  79. Eurich DT, Majumdar SR, McAlister FA et al. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care. 2005; 28 (10):2345–2351.
  80. Inzucchi SE. Metformin and heart failure: innocent until proven guilty. Diabetes Care. 2005; 28 (10):2585–2587.
  81. Nikolaidis LA, Elahi D, Hentosz T et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004; 110 (8):955‑961.
  82. Yki-Järvinen H. The PROactive study: some answers, many questions. Lancet. 2005; 366 (9493):1241–1242.
  83. Zanchi A, Chiolero A, Maillard M et al. Effects of the peroxisomal proliferator-activated receptor-gamma agonist pioglitazone on renal and hormonal responses to salt in healthy men. J Clin Endocrinol Metab. 2004; 89 (3):1140–1145.
  84. Guan Y, Hao C, Cha DR et al. Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption. Nat Med. 2005; 11 (8):861‑866.
  85. Dormandy JA, Charbonnel B, Eckland DJ et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005; 366 (9493):1279–1289.
  86. Dargie HJ, Hildebrandt PR, Riegger GA et al. A randomized, placebo-controlled trial assessing the effects of rosiglitazone on echocardiographic function and cardiac status in type 2 diabetic patients with New York Heart Association Functional Class I or II Heart Failure. J Am Coll Cardiol. 2007; 49 (16):1696–1704.
  87. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007; 356 (24):2457–2471.
  88. Home PD, Pocock SJ, Beck-Nielsen H et al. Rosiglitazone evaluated for cardiovascular outcomes – an interim analysis. N Engl J Med. 2007; 357 (1):28–38.
  89. Food and Drug Administration. FDA announces new recommendations on evaluating cardiovascular risk in drugs intended to treat type 2 diabetes. December 17, 2008. Available at: / .
  90. Lopaschuk GD, Barr R, Thomas PD, Dyck JR. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3‑ketoacyl coenzyme a thiolase. Circ Res. 2003; 93 (3):e33-37.
  91. MacInnes A, Fairman DA, Binding P et al. The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3‑ketoacyl coenzyme A thiolase. Circ Res. 2003; 93 (3):e26-32.
  92. Minners J, van den Bos EJ, Yellon DM et al. Dinitrophenol, cyclosporin A, and trimetazidine modulate preconditioning in the isolated rat heart: support for a mitochondrial role in cardioprotection. Cardiovasc Res. 2000; 47 (1):68–73.
  93. Monteiro P, Duarte AI, Gonçalves LM et al. Protective effect of trimetazidine on myocardial mitochondrial function in an ex-vivo model of global myocardial ischemia. Eur J Pharmacol. 2004; 503 (1–3):123‑128.
  94. Saeedi R, Grist M, Wambolt RB et al. Trimetazidine normalizes postischemic function of hypertrophied rat hearts. J Pharmacol Exp Ther. 2005; 314 (1):446‑454.
  95. Monti LD, Setola E, Fragasso G et al. Metabolic and endothelial effects of trimetazidine on forearm skeletal muscle in patients with type 2 diabetes and ischemic cardiomyopathy. Am J Physiol Endocrinol Metab. 2006; 290 (1):E54‑E59.
  96. Brottier L, Barat JL, Combe C et al. Therapeutic value of a cardioprotective agent in patients with severe ischaemic cardiomyopathy. Eur Heart J. 1990; 11 (3):207‑212.
  97. Fragasso G, Piatti Md PM, Monti L et al. Short- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am Heart J. 2003; 146 (5):E18.
  98. Rosano GM, Vitale C, Sposato B et al. Trimetazidine improves left ventricular function in diabetic patients with coronary artery disease: a double-blind placebo-controlled study. Cardiovasc Diabetol. 2003; 2:16.
  99. Vitale C, Wajngaten M, Sposato B et al. Trimetazidine improves left ventricular function and quality of life in elderly patients with coronary artery disease. Eur Heart J. 2004; 25 (20):1814–1821.
  100. Di Napoli P, Taccardi AA, Barsotti A. Long-term cardioprotective action of trimetazidine and potential effect on the inflammatory process in patients with ischaemic dilated cardiomyopathy. Heart. 2005; 91 (2):161‑165.
  101. Fragasso G, Palloshi A, Puccetti P et al. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol. 2006; 48 (5):992‑998.
  102. Fragasso G, Perseghin G, De Cobelli F et al. Effects of metabolic modulation by trimetazidine on left ventricular function and phosphocreatine / adenosine triphosphate ratio in patients with heart failure. Eur Heart J. 2006; 27 (8):942‑948.
  103. Tang WH. Metabolic approach in heart failure: rethinking how we translate from theory to clinical practice. J Am Coll Cardiol. 2006 Sep 5; 48 (5):999‑1000.
  104. Belardinelli R, Purcaro A. Effects of trimetazidine on the contractile response of chronically dysfunctional myocardium to low-dose dobutamine in ischaemic cardiomyopathy. Eur Heart J. 2001; 22 (23):2164–2170.
  105. El-Kady T, El-Sabban K, Gabaly M et al. Effects of trimetazidine on myocardial perfusion and the contractile response of chronically dysfunctional myocardium in ischemic cardiomyopathy: a 24‑month study. Am J Cardiovasc Drugs. 2005; 5 (4):271‑278.
  106. Di Napoli P, Di Giovanni P, Gaeta MA et al. Trimetazidine and reduction in mortality and hospitalization in patients with ischemic dilated cardiomyopathy: a post hoc analysis of the Villa Pini d’Abruzzo Trimetazidine Trial. J Cardiovasc Pharmacol. 2007; 50 (5):585‑589.
  107. Tuunanen H, Engblom E, Naum A et al. Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation. 2008; 118 (12):1250–1258.
  108. Lopaschuk GD, Stanley WC. Glucose metabolism in the ischemic heart. Circulation. 1997; 95 (2):313‑315.
  109. Randle PJ. Endocrine control of metabolism. Annu Rev Physiol. 1963; 25:291‑324.
  110. Sorokina N, O’donnell JM, McKinney RD et al. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation. 2007; 115 (15):2033–2041.
  111. Dennis SC, Gevers W, Opie LH. Protons in ischemia: wh ere do they come from; wh ere do they go to? J Mol Cell Cardiol. 1991; 23 (9):1077–1086.
  112. Lopaschuk GD, Wambolt RD, Barr RL. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J Pharmacol Exp Ther. 1993; 264 (1):135‑44.
  113. Opie LH, Bricknell OL. Role of glycolytic flux in effect of glucose in decreasing fatty-acid-induced release of lactate dehydrogenase from isolated coronary ligated rat heart. Cardiovasc Res. 1979; 13 (12):693‑702.
  114. Eichhorn EJ, Heesch CM, Barnett JH et al. Effect of metoprolol on myocardial function and energetics in patients with nonischemic dilated cardiomyopathy: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 1994; 24 (5):1310–1320.
  115. Bottcher M, Refsgaard J, Gotzsche O et al. Effect of carvedilol on microcirculatory and glucose metabolic regulation in patients with congestive heart failure secondary to ischemic cardiomyopathy. Am J Cardiol. 2002; 89 (12):1388–1393.
  116. Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3‑ketoacyl coenzyme A thiolase. Circ Res. 2000; 86 (5):580‑588.
  117. Panchal AR, Stanley WC, Kerner J, Sabbah HN. Beta-receptor blockade decreases carnitine palmitoyl transferase I activity in dogs with heart failure. J Card Fail. 1998; 4 (2):121‑126.
  118. J.W, Anker S.D, Walton C et al. Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol. 1997; 30 (2):527‑532.
  119. Doehner W, Rauchhaus M, Ponikowski P et al. Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol. 2005; 46 (6):1019–1026.

To access this material please log in or register

Register Authorize
Ru En