Russian Heart Failure Journal 2008year Left ventricular hypertrophy: role of the renin-angiotensin system

To access this material please log in or register

Register Authorize

Left ventricular hypertrophy: role of the renin-angiotensin system

Ageev F. T., Ovchinnikov A. G., Serbul V. M., Belenkov Yu. N.



Process of hypertrophy is considered adaptive, at least at early phases. At the same time, large epidemiological studies have convincingly demonstrated that LV hypertrophy is an independent RF for cardiovascular complications. Review analyzes in detail mechanisms for formation of LV hypertrophy in AH, factors influencing severity of LV hypertrophy, and possibilities for treating hypertrophy using drugs that inhibit the activity of renin-angiotensin system including ACE inhibitors and angiotensin receptor antagonists.
    1.    Schmieder R, Messerli F. Hypertension and the heart. J Hum Hypertens. 2000;14(10-11):597-604.
    2.    Opie L. Overload hypertrophy and its molecular biology. In: Opie L. Heart physiology: from cell to circulation. 4th ed. Philadelphia, Lippincott Williams & Wilkins, 2004.
    3.    Meerson F. The failing heart. In: Katz A, ed. Adaptation and deadaptation. New York: Raven Press, 1983.
    4.    Kozàkovà M, de Simone G, Morizzo C, Palombo C. Coronary vasodilator capacity and hypertension-induced increase in left ventricular mass. Hypertension. 2003;41(2):224-229.
    5.    Herron TJ, Korte FS, McDonald KS. Loaded shortening and power output in cardiac myocytes are dependent on myosin heavy chain isoform expression. Am J Physiol Heart Circ Physiol. 2001;281(3):H1217-1222.
    6.    Sack MN, Rader TA, Park S et al. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 1996;94(11):2837-2842.
    7.    Savage DD, Levy D, Dannenberg AL et al. Association of echocardiographic left ventricular mass with body size, blood pressure and physical activity (the Framingham Study). Am J Cardiol. 1990;65(5):371-376.
    8.    Devereux R, Koren M, DeSimone G et al. LV mass as a measure of preclinical hypertensive disease. Am J Hypertens 1992;5(Suppl):175.
    9.    Glennon P, Sugden P, Poole-Wilson P. Cellular mechanisms of cardiac hypertrophy. Br Heart J. 1995;73(6):496-499.
    10.    Ingber D. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res. 2002 Nov 15;91(10):877-87.
    11.    Crozatier B. Stretch-induced modifications of myocardial performance; from ventricular function to cellular and molecular mechanisms. Cardiovasc Res. 1996;32(1):25-37.
    12.    Esposito G, Rapacciuolo A, Naga Prasad SV et al. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation. 2002;105(1):85-92.
    13.    Zhuo J, Allen A, Yamada H et al. Localization and properties of the angiotensin converting enzyme and angiotensin receptors in the heart. In: Lindpaintner K. (ed). Cardiac rennin-angiotensin system. Futura 1994, p.p. 63-88.
    14.    Bardy N, Merval R, Benessiano J et al. Pressure and angiotensin II synergistically induce aortic fibronectin expression in organ culture model of rabbit aorta. Evidence for a pressure-induced tissue renin-angiotensin system. Circ Res. 1996;79(1):70-78.
    15.    Amedeo Modesti P, Zecchi-Orlandini S, Vanni S et al. Release of preformed Ang II from myocytes mediates angiotensinogen and ET-1 gene overexpression in vivo via AT1 receptor. J Mol Cell Cardiol. 2002;34(11):1491-500.
    16.    Mascareno E, Dhar M, Siddiqui MA. Signal transduction and activator of transcription (STAT) protein-dependent activation of aqngiotensin promoter: a cellular signal for hypertrophy in cardiac muscle. Proc Natl Acad Sci U S A. 1998;95(10):5590‑5594.
    17.    Kijima K, Matsubara H, Murasawa S et al. Mechanical stretch induces enhanced expression of angiotensin II receptor subtypes in neonatal rat cardiac myocytes. Circ Res. 1996;79(4):887-897.
    18.    Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev. 2000;52(1):11-34
    19.    Hein S, Arnon E, Kostin S et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107(7):984-91.
    20.    Cory C, Grange R, Houston M. Role of sarcoplasmic reticulum in loss of load sensitive relaxation in pressure overload cardiac hypertrophy. Am J Physiol. 1994;266(1 Pt 2):H68-78.
    21.    Katz A, Lorell B. Regulation of cardiac contraction and relaxation. Circulation. 2000;102(20 Suppl 4):IV69-74.
    22.    Arai M, Matsui H, Periasamy M. Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res. 1994;74(4):555-564.
    23.    De la Bastie D, Levitsky D, Rappaport L et al. Function of the sarcoplasmic reticulum and expression of its Ca2(+)-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res. 1990;66(2):554-564.
    24.    Penpargkul S, Repke DI, Katz AM, Scheuer J. Effect of physical training on calcium transport by rat cardiac sarcoplasmic reticulum. Circ Res. 1977;40(2):134-138.
    25.    Palmer S, Kentish C. Roles of Ca2+ and crossbridge kinetics in determining the maximum rates of Ca2+ activation and relaxation in rat and guinea pig skinned trabeculae. Circ Res. 1998;83(2):179-186.
    26.    Braunwald E, Bristow M. Congestive heart failure: fifty years of progress. Circulation. 2000;102(20 Suppl 4):IV14-23.
    27.    Weber K, Brilla C, Janicki J. Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res. 1993;27(3):341-348.
    28.    Weber K, Sun Y, Campbell S. Structural remodeling of the heart by fibrous tissue: Role of circulating hormones and locally produced peptides. Eur Heart J. 1995;16(Suppl N):12-18.
    29.    Weber K, Brilla C. Pathological hypertrophy and cardiac interstitium: fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991;83(6):1849-1865.
    30.    Villari B, Campbell S, Hess O et al. Influence of collagen network on left ventricular systolic and diastolic function in aortic valve disease. J Am Coll Cardiol. 1993;22(5):1477-1484.
    31.    Spinale F. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res. 2002;90(5):520-530.
    32.    Feldman A, Li Y, McTiernan C. Matrix metalloproteinases in pathophysiology and treatment of heart failure. Lancet. 2001;357(9257):654-655.
    33.    Bloor C, Nimmo L, McKirnan M et al. Increased gene expression of plasminogen activators and inhibitors in left ventricular hypertrophy. Mol Cell Biochem. 1997;176(1-2):265-271.
    34.    Spinale F, Coker M, Thomas C et al. Time-dependent changes in matrix mettaloproteinase activity and expression during the progression of congestive heart failure: Relation to ventricular and myocyte function. Circ Res. 1998;82(4):482-495.
    35.    Tyagi S, Kumar S, Banks J, Fortson W. Co-expression of tissue inhibitor and matrix mettaloproteinase in myocardium. J Mol Cell Cardiol. 1995;27(10):2177-2189.
    36.    Weber K, Anversa P, Armstrong P et al. Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol. 1992;20(1):3-16.
    37.    Oldershaw P, Brooksby I, Davies M et al. Correlations of fibrosis in endomyocardial biopsies from patients with aortic valve disease. Br Heart J. 1980;44(6):609-611.
    38.    Cheitlin M, Rubinowitz M, McAllister H et al. The distribution of fibrosis in the left ventricle in congenital aortic stenosis and coarctation of the aorta. Circulation. 1980;62(4):823-830.
    39.    Chapman D, Weber K, Eghbali M. Regulation of fibrillar collagen types I and III and basement membrane type IV collagen gene expression in pressure overloaded rat myocardium. Circ Res. 1990;67(4):787-794.
    40.    Weber K, Clarck W, Janicki J et al. Physiologic versus pathologic hypertrophy and the pressure-overloaded myocardium. J Cardiovasc Pharmacol. 1987;10(Suppl 6):S37-50.
    41.    Brilla C, Maisch B. Regulation of the structural remodelling of the myocardium: from hypertrophy to heart failure. Eur Heart J. 1994 Dec;15(Suppl D):45-52.
    42.    Lópes B, Gonzalez A, Varo N et al. Biochemical assessment of myocardial fibrosis in hypertensive heart disease. Hypertension. 2001;38(5):1222-1226.
    43.    Zannad F, Alla F, Dousset B et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure. Insights from Randomized Aldactone Evaluation Study (RALES). Circulation. 2000;102(22):2700-2706.
    44.    Kuwahara F, Kai H, Tokuda K et al. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106(1):130-135.
    45.    Kawano H, Do Y, Kawano Y et al. Angiotensin II has multiple profibrotic effects in human cardiac fibroblast. Circulation. 2000;101(10):1130-1137.
    46.    Chua C, Hamdy R, Chua B. Angiotensin II induces TIMP-1 production in rat heart endothelial cells. Biochim Biophys Acta. 1996;1311(3):175-180.
    47.    Tan L, Jalil J, Pick R et al. Cardiac myocite necrosis induced by angiotensin II. Circ Res. 1991;69(5):1185-1195.
    48.    Ratajska A, Campbell S, Sun Y et al. Angiotensin II associated cardiac myocite necrosis: role of adrenal catecholamines. Cardiovasc Res. 1994;28(5):684-690.
    49.    Kahan T. The importance of left ventricular hypertrophy in human hypertension. J Hypertens Suppl. 1998;16(7):S23-29.
    50.    Ichkhan K, Molnar J, Somberg J. Relation of left ventricular mass and QT dispersion in patients with systematic hypertension. Am J Cardiol. 1997;79(4):508-511.
    51.    Verdecchia P, Shillaci G, Borgioni C et al. Prognostic significance of serial changes in left ventricular mass in essential hypertension. Circulation. 1998;97(1):48-54.
    52.    Schussheim A, Diamond J, Phillips R. Left ventricular midwall function improves with antihypertensive therapy and regression of left ventricular hypertrophy in patients with asymptomatic hypertension. Am J Cardiol. 2001;87(1):61-65.
    53.    Kent R et al. Passive load and angiotensin II evoke differential responses of gene expression and protein synthesis in cardiac myocytes. Circ Res. 1996;78(5):829-838.
    54.    Ofili E, Cohen J, St Vrain J et al. Effect of treatment of isolated systolic hypertension on left ventricular mass. JAMA. 1998;279(10):778-780.
    55.    Lin F, Owens WA, Chen S et al. Targeted alpha(1A)-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res. 2001;89(4):343-350.
    56.    Klingbeil A, Schneider M, Martus P et al. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med. 2003;115(1):41-46.
    57.    Du X.-J. Sympathoadrenergic mechanisms in functional regulation and development of cardiac hypertrophy and failure: findings from genetically engineered mice. Cardiovasc Res. 2001;50(3):443-453.
    58.    Dahlöf B. LIFE substudy: echo data show more LVH regression with losartan versus atenolol. http/
    59.    Malmqvist K, Öhman K, Lind L et al. Relationship between left ventriculae mass and rennin-angiotensin system, catecholamines, insulin and leptin. J Intern Med. 2002;252(5):430-439.
    60.    López B, Querejeta R, Varo N et al. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation. 2001;104(3):286-291.
    61.    Querejeta R, Varo N, Lopez B et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation. 2000;101(14):1729-1735.
    62.    Varo N, Iraburu M, Varela M et al. Chronic AT (1) blockade stimulates extracellular collagen type I degradation and reverses myocardial fibrosis in spontaneously hypertensive rats. Hypertension. 2000;35(6):1197-1202.
    63.    Li H, Simon H, Bocan T, Peterson J. MMP/TIMP expression in spontaneously hypertensive heart failure rats: the effect of ACE- and MMP-I inhibition. Cardiovasc Res. 2000;46(2):298-306.
    64.    Brilla C, Matsubara L, Weber K. Advanced hypertensive heart disease in spontaneously hypertensive rats: lisinopril-mediated regression of myocardial fibrosis. Hypertension. 1996;28(2):269-275.
    65.    Díez J, Querejeta R, Lopes B et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002;105(21):2512-2517.
    66.    Агеев Ф.Т, Сербул В.М, Овчинников А.Г. Влияние ингибитора АПФ эналаприла и антагониста рецепторов к А-II кандесартана, а также их комбинации на индекс массы миокарда ЛЖ у пациентов с гипертонической гипертрофией ЛЖ. Журнал Сердечная Недостаточность. 2007;8(2):60-68.
    67.    Mento P, Wilkes B. Plasma angiotensins and blood pressure during converting enzyme inhibition. Hypertension. 1987;9(6 Pt 2):III42-48.
    68.    Wollert K, Studer R, Doerfer K et al. Differential effects of kinins on cardiomyocyte hypertrophy and interstitial collagen matrix in the surviving myocardium after myocardial infarction in the rat. Circulation. 1997;95(7):1910-1907.
    69.    Linz W, Scholkens B. A specific B2-bradykinin receptor antagonist HOE 140 abolishes the antihypertrophic effect of ramipril. Br J Pharmacol. 1992;105(4):771-772.
    70.    Horiuchi M, Akishita M, Dzau V. Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension. 1999;33(2):613-621.
    71.    Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res. 1998;83(12):1182-1191.
    72.    Harada K, Sugaya T, Murakami K et al. Angiotensin II type 1A receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction. Circulation. 1999;100(20):2093-2099.
    73.    Yang Z, Bove C, French B et al. Angiotensin II type 2 receptor overexpression preserves left ventricular function after myocardial infarction. Circulation. 2002;106(1):106-111.
    74.    Ichiki T, Labosky P, Shiota C et al. Effects on blood pressure and exploratory behavior of mice lacking angiotensin II type-2 receptor. Nature. 1995;377(6551):748-750.
    75.    Masaki H, Kurihara T, Yamaki A et al. Cardiac-specific overexpression of angiotensin II AT2 receptor causes attenuated response to AT1-receptor-mediated pressor and chronotropic effects. J Clin Invest. 1998;101(3):527-535.
    76.    Ohkubo N, Matsubara H, Nozawa Y et al. Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation. 1997;96(11):3954‑3962.
    77.    Tsutsumi H, Matsubara H, Ohkubo N et al. Angiotensin type 2 receptor is upregulated in human heart with interstitial fibrosis, and cardiac fibroblasts are the major cell type for its expression. Circ Res. 1998;83(10):1035-1046.
    78.    Warnecke C, Kaup D, Marienfeld U et al. Adenovirus-mediated overexpression and stimulation of the human angiotensin II type 2 receptor in porcine cardiac fibroblasts does not modulate proliferation, collagen I mRNA expression and ERK1/ERK2 activity, but inhibits protein tyrosine phosphatases. J Mol Med. 2001;79(9):510-521.
    79.    Brilla C, Funck R, Rupp H. Lisinopril mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102(12):1388-1393.

To access this material please log in or register

Register Authorize
Ru En