To access this material please log in or register

Register Authorize

The Role of MicroRNA in Atherogenesis

Kucher A. N.1,2, Nazarenko M. S.1
1 - Research Institute of Medical Genetics, Tomsk, Russia
2 - National Research Tomsk State University, Tomsk, Russia

Keywords: microRNA; atherogenesis; endothelial cells; smooth muscle cells; macropha

DOI: 10.18087/cardio.2017.9.10022

This review provides modern data on the spectrum and the functional significance of micro-RNAs involved in atherogenesis and on some regulatory mechanisms that ensure the functioning of this class of molecules. We also outline some examples of micro-RNAs use as diagnostic and therapeutic targets.
  1. Santovito D., Egea V., Weber C. Small but smart: MicroRNAs orchestrate atherosclerosis development and progression. Biochim Biophys Acta 2015;pii:S1388–1981(15)00235-8. DOI: 10.1016/j.bbalip.2015.12.013.
  2. Toba H., Lindsey M.L., Chilton R.J. Applications of miRNA Technology for Atherosclerosis. Curr Atheroscler Rep 2014;16(2):386. DOI: 10.1007/s11883-013-0386-9.
  3. Vladimirskaya T.E., Shved I.A., Krivorot S.G. Morphological Changes and Apoptosis of Coronary Artery Endothelial Cells in Atherosclerosis. Kardiologiia 2014;54(12):44–46.
  4. Russian (Владимирская Т.Э., Швед И.А., Криворот С.Г. Морфологические изменения и апоптоз эндотелиальных клеток коронарных артерий при атеросклерозе. Кардиология 2014;54(12):44–46). DOI: 10.18565/cardio.2014.12.44–46.
  5. Alekperov É.Z., Nadzhafov R.N. Contemporary concepts of the role of inflammation in atherosclerosis. Kardiologiia 2010;50(6):88–91. Russian (Алекперов Э.З., Наджафов Р.Н. Современные концепции о роли воспаления при атеросклерозе. Кардиология 2010;50(6):88–91).
  6. Andreou I., Sun X., Stone P.H., et al. miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med 2015;21(5):307–318. DOI: 10.1016/j.molmed.2015.02.003.
  7. Calore M., De Windt L.J., Rampazzo A. Genetics meets epigenetics: Genetic variants that modulate noncoding RNA in cardiovascular diseases. J Mol Cell Cardiol 2015;89(Pt A):27–34. DOI: 10.1016/j.yjmcc.2015.10.028.
  8. Welten S.M.J., Goossens E.A.C., Quax P.H.A., Nossent A.Y. The multifactorial nature of microRNAs in vascular remodeling. Cardiovascular Research 2016;110:6–22. DOI: 10.1093/cvr/cvw039
  9. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116(2):281–297.
  10. Lai E.C. Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 2002;30(4):363–364.
  11. Place R.F., Li L.C., Pookot D. et al. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 2008;105(5):1608–1613. DOI: 10.1073/pnas.0707594105.
  12. Economou E.K., Oikonomou E., Siasos G. et al. The role of micro-RNAs in coronary artery disease: From pathophysiology to diagnosis and treatment. Atherosclerosis 2015;241(2):624–633. DOI: 10.1016/j.atherosclerosis.2015.06.037.
  13. Araldi E., Suarez Y. MicroRNA as regulators of endothelial cell functions in cardiometabolic diseases. Biochim Biophys Acta 2016;pii:S1388–1981(16)30012-9. DOI: 10.1016/ j.bbalip.2016.01.013.
  14. Feinberg M.W., Moore K.J. MicroRNA Regulation of Atherosclerosis. Circ Res 2016;118(4):703–720. DOI: 10.1161/CIRCRESAHA.115.306300.
  15. Neth P., Nazari-Jahantigh M., Schober A., Weber C. MicroRNAs in flow-dependent vascular remodelling. Cardiovasc Res 2013;99(2):294–303. DOI: 10.1093/cvr/cvt096.
  16. Tan K.S., Armugam A., Sepramaniam S. et al. Expression Profile of MicroRNA in Young Stroke Patients. PLoS One 2009;4(11):e7689. DOI: 10.1371/journal.pone.0007689
  17. Stather P.W., Sylvius N., Wild J.B. et al. Differential MicroRNA Expression Profiles in Peripheral Arterial Disease. Circ Cardiovasc Genet 2013;6(5):490–497. DOI: 10.1161/CIRCGENETICS.111.000053.
  18. Jiang Y., Wang H.Y., Li Y. et al. Peripheral blood miRNAs as a biomarker for chronic cardiovascular diseases. Sci Rep 2014;4:5026. DOI: 10.1038/srep05026.
  19. Kucher A. N., Babushkina N. P. Role of microRNA, genes involved in their biogenesis and functioning in the development of human disorders. Medical Genetics 2011;1:3–13. Russian (Кучер А. Н., Бабушкина Н. П. Роль микро-РНК, генов их биогенеза и функционирования в развитии патологических состояний у человека. Медицинская генетика 2011;1:3–13).
  20. Chen K., Song F., Calin G.A. et al. Polymorphisms in microRNA target: a gold mine for molecular epidemiology. Carcinogenesis 2008;29(7):1306–1311. DOI: 10.1093/carcinbgn116.
  21. Kucher A.N., Babushkina N.P. Role of microRNA in the development of cardiovascular diseases. Molecular Medicine 2012;1:10–17. Russian (Кучер А.Н., Бабушкина Н.П. Роль микро-РНК в развитии заболеваний сердечно-сосудистой системы. Молекулярная медицина 2012;1:10–17).
  22. Virtue A., Mai J., Yin Y. et al. Structural evidence of anti-atherogenic microRNAs. Front Biosci (Landmark Ed) 2011;16:3133–3145.
  23. Kunz M., Xiao K., Liang C., et al. Bioinformatics of cardiovascular miRNA biology. J Mol Cell Cardiol 2015;89(Pt A):3–10. DOI: 10.1016/j.yjmcc.2014.11.027.
  24. Nazari-Jahantigh M., Egea V., Scober A., Weber C. MicroRNA-specific regulatory mechanisms in atherosclerosis. J Mol Cell Cardiol 2015;89(Pt A):35–41. DOI: 10.1016/j.yjmcc.2014.10.021
  25. Hartmann D., Thum T. MicroRNAs and vascular (dys)function. Vascular Pharmacology 2011;55(4):92–105. DOI: 10.1016/j.vph.2011.07.005
  26. Kemp J.R., Unal H., Desnoyer R. et al. Angiotensin II-regulated microRNA 483-3p directly targets multiple components of the Renin-Angiotensin System. J Mol Cell Cardiol 2014;75:25–39. DOI: 10.1016/j.yjmcc.2014.06.008.
  27. Harmann P., Schober A., Weber C. Chemokines and microRNA in atherosclerosis. Cell Mol Life Sci 2015;72(17):3253–3266. DOI: 10.1007/s00018-015-1925-z.
  28. Hulsmans M., De Keyzer D., Holvoet P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J 2011;25(8):2515–2527. DOI: 10.1096/fj.11-181149
  29. Fang Y., Davies P.F. Site-Specific micro-RNA-92a regulation of Kruppel-Like Factor 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 2012;32(4):979–87. DOI: 10.1161/ATVBAHA.111.244053.
  30. Kucher A.N. Role of microRNA in the development of atherosclerosis. Molecular Biology Technologies in Medical Practice. Edited by A.B. Maslennikov. Novosibirsk: Akademizdat 2014;20: 118–151. Russian (Кучер А.Н. Роль микро-РНК в развитии атеросклероза. Сб.: «Молекулярно-биологические технологии в медицинской практике». Под ред. Масленникова А.Б. Новосибирск: Академиздат 2014;20:118–151).
  31. Jiang Y.-Z., Manduchi E., Stoeckert C.J., Davies P.F. Arterial endothelial methylome: differential DNA methylation in athero-susceptible disturbed flow region in vivo. BMC Genomics 2015;16:506. DOI: 10.1186/s12864-015-1656-4.
  32. Karunakara D., Rayner K.J. Macrophage miRNAs in atherosclerosis. Biochim Biophys Acta 2016;pii:S1388–1981(16)30027-0. DOI: 10.1016/j.bbalip.2016.02.006
  33. Li J., Chen H., Ren J. et al. Effect of statin on circulation microRNAome and predicted function regulatory network in patient with unstable angina. BMC Med Genomics 2015;8:12. DOI: 10.1186/s12920-015-0082-4.
  34. Das Gupta M., Fliesser M., Springer J. et al. Aspergillus fumigatus induces microRNA-132 in human monocytes and dendritic cells. Int J Med Microbiol 2014;304(5–6):592–596. DOI: 10.1016/j.ijmm.2014.04.005.
  35. Karere G.M., Glenn J.P., VandeBerg J.L., Cox L.A. Differential microRNA response to a high-cholesterol, high-fat diet in livers of low and high LDL-C baboons. BMC Genomics 2012;13:320. DOI: 10.1186/1471-2164-13-320.
  36. Weinberg M.W., Moore K.J. MicroRNA Regulation of Atherosclerosis. Circ Res 2016;118(4):703–720. DOI: 10.1161/CIRCRESAHA.115.306300.
  37. Nazarenko M.S., Markov A.V., Lebedev I.N. et al. A Comparison of Genome-Wide DNA Methylation Patterns between Different Vascular Tissues from Patients with Coronary Heart Disease. PLoS One 2015;10(4):e0122601. DOI: 10.1371/journal.pone.0122601.
  38. Fuentes E., Palomo I., Alarcón M. Platelet miRNAs and cardiovascular diseases. Life Sci 2015;133:29–44. DOI: 10.1016/j.lfs.2015.04.016.
  39. Li S.H, Su S.Y., Liu J.L. Differential Regulation of microRNAs in Patients with Ischemic Stroke. Curr Neurovasc Res 2015;12(3):214–221.
  40. Tonge D.P., Gant T.W. What is normal? Next generation sequencing-driven analysis of the human circulating miRNAOme. BMC Mol Biol 2016;17:4. DOI: 10.1186/s12867-016-0057-9.
  41. Li T., Yang G.M., Zhu Y., et al. Diabetes and hyperlipidemia induce dysfunction of VSMCs: contribution of the metabolic inflammation/miRNA pathway. Am J Physiol Endocrinol Metab 2015;308(4):E257–69. DOI: 10.1152/ajpendo.00348.2014.
  42. Jeon T.I., Osborne T.F. miRNA and cholesterol homeostasis. Biochim Biophys Acta 2016;pii:S1388-1981(16)00006-8. DOI: 10.1016/j.bbalip.2016.01.005.
  43. National Center for Biotechnology Information, NCBI. http://www.ncbi.nlm.nih.gov.
  44. Fichtlscherer S., De Rosa S., Fox H., et al. Curculating micro-RNAs in patients with coronary artery disease. Circ Res 2010;107(5):677–684. DOI: 10.1161/CIRCRESAHA.109.215566.
  45. Aavik E., Lumivuori H., Leppänen O. et al. Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster. Eur Heart J 2015;36(16):993–1000. DOI: 10.1093/eurheartj/ehu437.
  46. Van Rooij E., Olson E.N. Micro RNA: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 2007;117(9):2369–2376.
  47. Zhang M.X., Ou H., Shen Y.H. et al. Regulation of endothelial nitric oxide synthase by small RNA. Proc Natl Acad Sci USA 2005;102(47):16967–16972.
  48. Cordes K.R., Sheehy N.T., White M.P. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009;460(7256):705–170. DOI: 10.1038/nature08195.
  49. Bommer G.T., MacDougald O.A. Regulation of lipid homeostasis by the bifunctional SREBF2-miR33a locus. Cell Metabolism 2011;13(3):241–247. DOI: 10.1016/j.cmet.2011.02.004.
  50. Xie W., Li P., Wang Z. et al. Rosuvastatin may reduce the incidence of cardiovascular events in patients with acute coronary syndromes receiving percutaneous coronary intervention by suppressing miR-155/SHIP-1 signaling pathway. Cardiovascular Therapeutics 2014;32(6):276–282. DOI: 10.1111/1755-5922.12098.
  51. Guo W., Liu H., Li L. et al. Regulation of lovastatin on a key inflammation-related microRNA in myocardial cells. Chin Med J (Engl) 2014;127(16):2977–2981
  52. Athyros V.G., Katsiki N., Karagiannis A., Mikhailidis D.P. Combination of statin plus renin angiotensin system inhibition for the prevention or the treatment of atherosclerotic cardiovascular disease. Curr Pharm Des 2014;20(40):6299–6305.
  53. Emanueli C., Shearn A.I., Angelini G.D., Sahoo S. Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascul Pharmacol 2015;71:24–30. DOI: 10.1016/j.vph.2015.02.008.
  54. Das S., Halushka M.K. Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovasc Pathol 2015;24(4):199–206. DOI: 10.1016/j.carpath.2015.04.007.
  55. Van Geel P.P., Pinto Y.M., Buikema H., Van Gilst W.H. Is the A1166C polymorphism of the angiotensin II type 1 receptor involved in cardiovascular disease? Eur Heart J 1998;19 Suppl G:G13–7.
  56. Sethupathy P., Borel C., Gagnebin M. et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3’ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 2007;81:405–413.
  57. Martin M.M., Buckenberger J.A., Jiang J. et al. The human angiotensin II type 1 receptor +1166A/C polymorphism attenuates microRNA-155 binding. J Biol Chem 2007;282(33):24262–24269.
  58. Martin M.M., Lee E.J., Buckenberger J.A. et al. MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J Biol Chem 2006;281(27):18277–18284.
  59. Seeger T., Boon R.A. MicroRNAs in cardiovascular ageing. J Physiol 2016;594(8):2085–2094. DOI: 10.1113/JP270557.
  60. Napoli C., Grimaldi V., De Pascale M.R. et al. Novel epigenetic-based therapies useful in cardiovascular medicine. World J Cardiol 2016;8(2):211–219. DOI: 10.4330/wjc.v8.i2.211.
  61. Ono K. Functions of microRNA-33a/b and microRNA therapeutics. J Cardiol 2016;67(1):28–33. DOI: 10.1016/j.jjcc.2015.10.017.
  62. Pourrajab F., Vakili Zarch A., Hekmatimoghaddam S., Zare-Khormizi M.R . MicroRNAs; easy and potent targets in optimizing therapeutic methods in reparative angiogenesis. J Cell Mol Med 2015;19(12):2702–2714. DOI: 10.1111/jcmm.12669.
  63. Youn S.W., Park K.-K. Small-Nucleic-Acid-Based Therapeutic Strategy Targeting the Transcription Factors Regulating the Vascular Inflammation, Remodeling and Fibrosis in Atherosclerosis. Int J Mol Sci 2015;16(5):11804–11833. DOI: 10.3390/ijms160511804
  64. Satoh M., Takahashi Y., Tabuchi T. et al. Circulating Toll-like receptor 4-responsive microRNA panel in patients with coronary artery disease: results from prospective and randomized study of treatment with renin-angiotensin system blockade. Clinical Science (London) 2015;128(8):483–491. DOI: 10.1042/CS20140417.
  65. Huang S., Chen M., Li L. et al. Circulating MicroRNAs and the occurrence of acute myocardial infarction in Chinese populations. Circ Cardiovasc Genet 2014;7(2):189–198. DOI: 10.1161/CIRCGENETICS.113.000294.
  66. Hinkel R., Trenkwalder T., Kupatt C. Gene therapy for ischemic heart disease. Expert Opin Biol Ther 2011;11(6):723–737. DOI: 10.1517/14712598.2011.570749.
  67. Vil’gel’m A.E., Chumakov S.P., Prasolov V.S. RNA interference: biology and perspectives of application in biomedicine and biotechnology. Molecular Biology (Mosk) 2006;40(3):387–403. Russian (Вильгельм А.Э., Чумаков С.П., Прасолов В.С. Интерференция РНК: биология и перспективы применения в биомедицине и биотехнологии. Молекулярная биология 2006;40(3):387–403).
Kucher A. N., Nazarenko M. S. The Role of MicroR NA in Atherogenesis. Kardiologiia. 2017;57(9):65–76.

To access this material please log in or register

Register Authorize
Ru En