To access this material please log in or register

Register Authorize

Molecular Aspects of Translational Cardiology in Vascular Wall Research

Maksimenko A. V.
Institute of Experimental Cardiology of Russian Cardiology Research and Production Complex, Moscow, Russia

Keywords: endothelial glycocalyx; vascular wall hydration; water-electrolyte exchange; antioxidant enzymes; protein three-dimensional structure modeling

DOI: 10.18087/cardio.2017.7.10008

Clinical-biochemical research of vascular wall hydrated state, water-electrolyte balance has broadened substantially our notions concerning initiation mechanism of vessel damages, methods of their prevention and treatment. Consecutive study of endothelial glycocalyx functioning, computational research of its interaction with oxidative stress, regulation of its state has been aimed at development of novel means of the vascular system protection. Mutual efforts of clinicians and scientists should contribute to the productivity of results of translational cardiology.
  1. van Hout G.P. J., Jansen of Lorkeers S.J. J., Wever K.E. et al. Translational failure of anti-inflammatory compounds for myocardial infarction: a meta-analysis of large animal models. Cardiovasc Res 2016;109:240–248.
  2. Van de Werf F. The history of coronary reperfusion. Eur Heart J 2014;35:2510–2315.
  3. Maksimenko A. V. Cardiological biopharmaceuticals in the conception of drug targeting delivery: practical results and research perspectives. Acta Naturae 2012;4 (3):72–81. Russian (Максименко А. В. Кардиологические биофармацевтики в концепции направленного транспорта лекарств: практические результаты и исследовательские перспективы. Acta Naturae 2012;4 (3):76–86).
  4. Scott C. Speeding development and lowering cost while enhancing quality: a BPI theater roundtable at the 2015 BIO Convention. Bioprocess Int 2015;13 (4):23–25, 53.
  5. Hoefer I.E., Steffens S., Ala-Korpela M. et al. On behalf of the ESC Working Group Atherosclerosis and Vascular Biology. Novel methodologies for biomarker discovery in atherosclerosis. Eur Heart J 2015;36:2635–2642.
  6. Lüscher T.F. The bumpy road to evidence: why many research findings are lost in translation. Eur Heart J 2013;34:3329–3335.
  7. Reitsma S., Slaaf D.W., Vink H. et al. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007;454 (3):345–359.
  8. Maksimenko A. V., Turashev A. D. Endothelial glycocalyx of blood circulation system. I. Detection, components, and structure organization. Russ J Bioorg Khim 2014;40 (2):119–128. Russian (Максименко А. В., Турашев А. Д. Эндотелиальный гликокаликс системы кровообращения. I. Обнаружение, компоненты, структурная организация. Биоорган химия 2014;40 (2):131–141).
  9. Barker A.L., Konopatskaya O., Neal C.R. et al. Observation and characterization of the glycocalyx of viable human endothelial cells using confocal laser scanning microscopy. Phys Chem Chem Phys 2004;6:1006–1011.
  10. Megens R.T. A., Reitsma S., Schiffers P.H. M. et al. Two-photon microscopy of vital murine elastic and muscular arteries. J Vasc Res 2007;44:87–98.
  11. Maksimenko A. V., Turashev A. D. Endothelial glycocalyx of blood circulation system. II. Biological functions, state under normal and pathological conditions, and bioengineering applications. Russ J Bioorg Khim 2014;4 (3):237–251. Russian (Максименко А. В., Турашев А. Д. Эндотелиальный гликокаликс системы кровообращения. II. Биологические функции, состояние в норме и патологии, биоинженерное использование. Биоорган химия 2014;40 (3):259–274).
  12. Nieuwdorp M., Menwese M.C., Mooij H.L. et al. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol 2008;104:845–852.
  13. den Uil C.A., Klijn E., Lagrand W.K. et al. The microcirculation in health and critical disease. Prog Cardiovasc Dis 2008;51:161–170.
  14. Nieuwdorp M., Menwese M.C., Vink H. et al. The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol 2005;16 (5):507–511.
  15. Broekhuizen L.N., Mooij H.L., Kastelein J.J. et al. Endothelial glycocalyx as potential diagnostic and therapeutic target in cardiovascular disease. Curr Opin Lipidol 2009;20 (1):57–62.
  16. Maksimenko A. V. Endothelial glycocalyx as orchestrator of vascular homeostasis. New research problems and prospects for vascular wall protection. Russ Chem Bull 2015;65:2036–2042. Russian (Максименко А. В. Эндотелиальный гликокаликс – настройщик сосудистого гомеостаза. Новые исследовательские задачи и перспективы защиты стенки кровеносных сосудов. Изв АН. Сер Хим 2015;9:2036–2042).
  17. Becker B.F., Jacob M., Leipert S. et al. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 2015;80 (3):389–402.
  18. Minari F.A. C. Medical significance of endothelial glycocalyx. Part 2. Its role in vascular diseases and in diabetic complications. Arch Cardiol Mex 2014;84 (2):110–116.
  19. Salmon A.H., Satchell S.C. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol 2014;226 (4):562–574.
  20. Vlahu C.A., Lemkes B.A., Struijk D.G. et al. Damage of the endothelial glycocalyx in dialysis patients. J Am Soc Nephrol 2012;23 (11):1900–1908.
  21. Singh A., Friden V., Dasgupta I. et al. High glucose causes dysfunction of the human gromerular endothelial glycocalyx. Am J Physiol Renal Physiol 2011;300 (1):F40 – F48.
  22. Nieuwdorp M., van Haeften T.W., Gouverneur M.C. et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 2006;55 (2):480–486.
  23. Salmito F.T., de Oliveira Neves F.M., Meneses G.C. et al. Glycocalyx injury in adults with nephritic syndrome: association with endothelial function. Clin Chim Acta 2015;447:55–58.
  24. Shakya S., Wang Y., Mack J.A., Maytin E.V. Hyperglycemia-induced changes in hyaluronan contribute to impaired skin wound healing in diabetes: review and perspective. Int J Cell Biol 2015;2015:701–738.
  25. Vlahu C.A., Krediet R.T. Can plasma hyaluronan and hyaluronidase be used as markers of the endothelial glycocalyx state in patients with kidney disease? Adv Perit Dial 2015;31:3–6.
  26. Miranda S., Armengol G., Le Besnerais M. et al. New insight into systemic sclerosis related microcirculatory dysfunction by assessment of sublingual microcirculation and vascular glycocalyx layer. Results from a preliminary study. Microvasc Res 2005;99:72–77.
  27. Miranda C.H., de Carvalho Borgers M., Schmidt A. et al. Evaluation of the endothelial glycocalyx damage in patients with acute coronary syndrome. Atherosclerosis 2016;247:184–188.
  28. McGee M., Wagner W.D. Chondroitin sulfate anticoagulant activity is linked to water transfer. Relevance to proteoglycans structure in atherosclerosis. Arterioscler Thromb Vasc Biol 2003;23:1921–1927.
  29. Maksimenko A. V. Effects of glycosaminoglycans in vascular events. Pharm Chem J 2008;42 (10):3–13. Russian (Максименко А. В. Эффекты гликозаминогликанов в сосудистых событиях. Хим-фарм журн 2008;42 (10):3–13).
  30. van den Berg B.M., Vink H., Spaan J.A. E. The endothelial glycocalyx protects against myocardial edema. Circ Res 2003;92 (6):592–594.
  31. Dongaonkar R.M., Stewart R.H., Geissler H.J., Laine G.A. Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovasc Res 2010;87:331–339.
  32. Becker B.F., Chappell D., Jacob D. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol 2010;105 (6):687–701.
  33. Di Cera E. Atherosclerosis. Testing the water. Arterioscler Thromb Vasc Biol 2003;23:1713–1714.
  34. Solursh M., Hardingham T.E., Hascall V.C., Kimura J.H. Separate effects of exogenous hyaluronic acid on proteoglycans synthesis and deposition in pericellular matrix by cultured chick embryo limb chondrocytes. Dev Biol 1980;75 (1):121–129.
  35. Seneff S., Davidson R.M., Lauritzen A. et al. A novel hypothesis for atherosclerosis as a cholesterol sulfate deficiency syndrome. Theor Biol Med Model 2015;12:9. doi: 10.1186/s12976-015-0006-1.
  36. Oberleithner H., Wälte M., Kusche-Vihrog K. Sodium renders endothelial cells sticky for red blood cells. Front Physiol 2015;6:188. doi: 10.3389/fphys.2015.00188.
  37. Oberleithner H., Wilhelmi M. Vascular glycocalyx sodium store – determinant of cell sensitivity? Blood Purif 2015;39 (1–3):7–10.
  38. Lee D.H., Dane M.J., van den Berg B.M. et al. NEO study group. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion. PLoS One 2014;9 (5):e96477.
  39. Oberleithner H. Sodium selective erythrocyte glycocalyx and salt sensitivity in man. Pflugers Arch 2015;467 (6):1319–1325.
  40. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82 (1):47–95.
  41. Münzel T., Gori T., Bruno R.M., Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 2010;31:2741–2749.
  42. Ekelof S., Jensen S.E., Rosenberg J., Gögenur I. Reduced oxidative stress in STEMI patients treated by primary percutaneous coronary intervention and with antioxidant therapy: a systematic review. Cardiovasc Drugs Ther 2014;28 (2):173–181.
  43. Vink H., Constantinescu A.A., Spaan J.A. Oxidized lipoproteins degrade the endothelial surface layer: implication for platelet-endothelial cell adhesion. Circulation 2000;101 (13):1500–1502.
  44. Kumagai R., Lu X., Kassab G.S. Role of glycocalyx in flow-induced production of nitric oxide and reactive oxygen species. Free Radic Biol Med 2009;47 (5):600–607.
  45. Holley A., Miller J., Harding S., Larsen P. Prognostic significance of antioxidant enzymes in acute coronary syndromes. Cardiovasc Res 2014;103 (1):S142.
  46. Tokarz P., Kaamiranta K., Blasiak J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology 2013;14 (5):461–482.
  47. Maksimenko A. V. Experimental antioxidant biotherapy for protection of the vascular wall by modified forms of superoxide dismutase and catalase. Curr Pharm Design 2005;11 (16):2007–2016.
  48. Maksimenko A. V., Vavaev A. V. Antioxidant enzymes as potential targets in cardioprotection and treatment of cardiovascular diseases. Enzyme antioxidants: the next stage of pharmacological counterwork to the oxidative stress. Heart Int 2012;7 (1):14–19.
  49. Martinez Mdel C., Afonso S.G., Buzaleh A.M., Batlle A. Protective action of antioxidant on hepatic damage induced by griseofulvin. Scientific World J 2014;2014:982358.
  50. Hide D., Ortega-Ribera M., Fernandez-Iglesias A. et al. A novel form of the human manganese superoxide dismutase protects rat and human livers undergoing ischemia and reperfusion injury. Clin Sci (London) 2014;127 (8):527–537.
  51. Mansuroglu B., Derman S., Yaba A., Kizilbey K. Protective effect of chemically modified SOD on lipid peroxidation and antioxidant status in diabetic rats. Int J Biol Macromol 2015;72:79–87.
  52. Wang J., Zhang H., Zhang T. et al. Molecular mechanism on cadmium-induced activity changes of catalase and superoxide dismutase. Int J Biol Macromol 2015;77:59–67.
  53. Hood E.D., Chorny M., Greineder C.F. et al. Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation. Biomaterials 2014;35 (11):3708–3715.
  54. Weissig V., Guzman-Villanueva D. Nanocarrier-based antioxidant therapy: promise or delusion? Expert Opin Drug Deliv 2015;12 (11):1783–1790.
  55. Richard P.U., Duskey J.T., Stolarov S. et al. New concepts to fight oxidative stress: nanosized three-dimensional supramolecular antioxidant assembles. Expert Opin Drug Deliv 2015;12 (9):1527–1545.
  56. Lewis D.R., Petersen L.K., York A.W. et al. Nanotherapeutics for inhibition of atherogenesis and modulation of inflammation in atherosclerotic plaques. Cardiovasc Res 2016;109:283–293.
  57. Yan F., Mu Y., Yan G., et al. Antioxidant enzyme mimics with synergism. Mini Rev Med Chem 2019;10 (4):342–356.
  58. Maksimenko A. V. Widening and elaboration of consecutive research into therapeutic antioxidant enzyme derivatives. Oxid Med Cell Longevity 2016; http://dx.doi.org/10.1155/2016/3075695.
  59. Maksimenko A. V., Golubykh V. L., Tischenko E. G. The combination of modified antioxidant enzymes for anti-thrombotic protection of the vascular wall: the significance of covalent connection of superoxide dismutase and catalase activities. J Pharm Pharmacol 2004;56:1463–1468.
  60. Ylä-Herttuala S., Sumuvuori H., Karkola K. et al. Glycosaminoglycans in normal and atherosclerotic human coronary arteries. Lab Invest 1986;54 (4):402–407.
  61. Kolodgie F.D., Burke A.P., Farb A. et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesion: insight into plaque erosion. Arterioscler Thromb Vasc Biol 2002;22 (10):1642–1648.
  62. Wight T.N., Marrilees M.J. Proteoglycans in atherosclerosis and restenosis: key role for versican. Circ Res 2004;94 (9):1158–1167.
  63. Luangwattanaun P., Yainoy S., Eiamphungporn W. et al. Engineering of novel tri-functional enzyme with MnSOD, catalase and cell-permeable activities. Int J Biol Macromol 2016;85:451–459.
  64. Karaduleva E.V., Mubarakshina E.K., Sharapov M.G. et al. Cardioprotective effect of modified peroxiredoxins in retrograde perfusion of isolated rat heart under conditions of oxidative stress. Bull Exp Biol Med 2016;160 (5):639–642. Russian (Карадулева Е. В., Мубаракшина Э. К., Шарапов М. Г. и др. Кардиопротекторный эффект модифицированных пероксиредоксинов при ретроградной перфузии изолированного сердца крысы в условиях окислительного стресса. Бюлл экспер биол мед 2015;160 (11):584–588).
  65. Pantrelli G., Halliday I., Spencer T.J. et al. Modelling the glycocalyx-endothelium-erythrocyte interaction in the microcirculation: a computational study. Comput Metods Biomech Biomed Engin 2015;18 (4):351–361.
  66. Grant O.C., Tessier M.B., Meche L. et al. Combining 3D structure with glycan array data provides insight into the origin of glycan specificity. Glycobiology 2016; doi: 10/1093/glycob/cww020.
  67. Agostino M., Gandhi N.S., Mancera R.L. Development and application of site mapping methods for the design of glycosaminoglycans. Glycobiology 2014;24 (9):840–851.
  68. Sankaranarayanan N.V., Desai U.R. Toward a robust computational screening strategy for identifying glycosaminoglycan sequences that display high specificity for target proteins. Glycobiology 2014;24 (12):1323–1333.
  69. Jayakanthan M., Jubendradass R ., D’Cruz S.C., Mathur P.P. A use of homology modeling and molecular docking methods: to explore binding mechanisms of nonylphenol and bisphenol A with antioxidant enzymes. Methods Mol Biol 2015;1268:273–289.
  70. Maksimenko A., Turashev A., Fedorovich A. et al. Hyaluronidase proof for endothelial glycocalyx as partaker of microcirculation disturbances. J Life Sci 2013;7 (2):171–188.
  71. Maksimenko A. V., Turashev A. D., Beabealashvili R. S. Stratification of chondroitin sulfate binding sites in 3D-model of bovine testicular hyaluronidase and effective size of glycosaminoglycan coat of the modified protein. Biochemistry (Moscow) 2015;80 (3):284–295. Russian (Максименко А. В., Турашев А. Д., Бибилашвили Р. Ш. Стратификация центров присоединения хондроитинсульфата к ферменту на 3D модели бычьей тестикулярной гиалуронидазы и эффективный размер гликозамино-гликановой оболочки модифицированного белка. Биохимия 2015;80(3):348–357).
  72. Chao K.L., Muthukumar L., Herzberg O. Structure of human hyaluronidase-1, a hyaluronan hydrolyzing enzyme involved in tumor growth and angiogenesis. Biochemistry 2007;46:6911–6920.
  73. Tatara Y., Kakizaki I., Suto S. et al. Chondroitin sulfate cluster of epiphycan from salmon nasal cartilage defines binding specificity to collagens. Glycobiology 2015;25 (5):557–569.
Maksimenko A. V. Molecular Aspects of Translational Cardiology in Vascular Wall Research. Kardiologiia. 2017;57(7):66–79.

To access this material please log in or register

Register Authorize
Ru En