150.00 rub.
Buy article

Specific Characteristics of Coronary Atherosclerosis

Pykhteev V. S.2, Lashevich K. A.2, Bogdan A. P.1, 2, Belash S. A.1, 2
1Regional Clinical Hospital No1, Krasnodar, Russia
2Kuban State Medical University, Krasnodar, Russia

Keywords: coronary artery atherosclerosis; calcification; diabetes mellitus; myocardial bridges

DOI: 10.18087/cardio.2017.7.10007

In this review, we present modern aspects of etiology and pathogenesis of atherosclerosis. We describe the roles played by inflammatory cells, components of cellular response in allergic reactions, disturbances of carbohydrate metabolism, cellular aging, and infection at various stages of formation of atherosclerotic plaques. Special attention is given to the specific characteristics of atherosclerosis and calcification of coronary arteries. We show the influence of age and gender on the disease progression. The review includes information on the importance of myocardial bridges for the change of hemodynamics in segments of coronary arteries. The data presented indicate that differences in localization of atherosclerotic lesions between systems of the right and left coronary arteries depends on their hemodynamic, anatomical and physiological characteristics. According to the literature, anterior descending artery is more vulnerable in this respect.
  1. Mukamal K.J., Wellenius G.A., Mittleman M.A. Hematologic parameters, atherosclerotic progression, and prognosis in patients with previous coronary artery bypass grafting (from the Post CABG Trial). Am J Cardiol 2009;103(3):328–332. DOI: 10.1016/j.amj-card.2008.09.080.
  2. Papa A., Emdin M., Passino C. et al. Predictive value of elevated neutrophil-lymphocyte ratio on cardiac mortality in patients with stable coronary artery disease. Clin Chim Acta 2008;395 (1–2):27–31. DOI: 10.1016/j.cca.2008.04.019.
  3. Chu S.G., Becker R.C., Berger P.B. et al. Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost 2010;8(1):148–156. DOI: 10.1111/j.1538–7836.2009.03584.x.
  4. Oguzhan A., Mehmet G., Kaya N. et al. Hematologic Parameters and Angiographic Progression of Coronary Atherosclerosis. Angiology 2012;63:213. DOI: 10.1177/0003319711412763.
  5. Moore K.J., Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011;145:341–355. DOI: 10.1016/j.cell.2011.04.005.
  6. Hansson G.K., Hermansson A. The immune system in atherosclerosis. Nat Immunol 2011;12:204–212. DOI: 10.1038/ni.2001.
  7. Woollard K.J., Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 2010;7:77–86. DOI: 10.1038/nrcardio.2009.228.
  8. Robbins C.S., Chudnovskiy A., Rauch P.J. et al. Extramedullary hematopoiesis generates Ly-6C (high) monocytes that infiltrate atherosclerotic lesions. Circulation 2012;125:364–374. DOI: 10.1161/CIRCULATIONAHA.111.061986.
  9. Quinn K.L., Henriques M., Tabuchi A. et al. Human neutrophil peptides mediate endothelial-monocyte interaction, foam cell formation, and platelet activation. Arterioscler Thromb Vasc Biol 2011;312070–2079. DOI: 10.1161/ATVBAHA.111.227116.
  10. Andraws R., Berger J., Brown D. et al. Effects of Antibiotic Therapy on Outcomes of Patients With Coronary Artery Disease. A Meta-analysis of Randomized Controlled Trials. JAMA 2005;21:2642–2647. DOI:10.1001/jama.293.21.2641.
  11. Binder C., Witztum J. Is Atherosclerosis an Allergic Disease? Circ Res 2011;109:1103–1104. DOI: 10.1161/RES.0b013e31823a8c44.
  12. Wang J., Cheng X., Xiang M.X. et al. IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe–/–mice. J Clin Invest 2011;121:3564–3577. DOI: 10.1172/JCI46028.
  13. Ravandi A., Boekholdt S.M., Mallat Z. et al. Relationship of IgG and IgM autoantibodies and immune complexes to oxidized LDL with markers of oxidation and inflammation and cardiovascular events: results from the Epic-Norfolk study. J Lipid Res 2011;52:1829–1836. DOI: 10.1194/jlr.M015776.
  14. Sun J., Hartvigsen K., Chou M.Y. et al. Deficiency of antigen-presenting cell invariant chain reduces atherosclerosis in mice. Circulation 2010;122:808–820. DOI: 10.1161/CIRCULATIONAHA.109.891887.
  15. Shabrov A. V., Kotova S. M. Diabetes mellitus and Cardiovascular system. Medical Academic J 2008;8 (1):167–172. Russian (Шабров А. В., Котова С. М. Сахарный диабет и сердечно-сосудистая система. Медицинский академический журнал 2008;8 (1):167–172).
  16. Ray A., Huisman M.V., Tamsma J.T. et al. The role of inflammation on atherosclerosis, intermediate and clinical cardiovascular endpoints in type 2 diabetes mellitus. Europ J Intern Med 2009;20:253–260. DOI: 10.1016/j.ejim.2008.07.008.
  17. Takei Y., Tomiyama H., Tanaka N., et al. Close relationship between sympathetic activation and coronary microvascular dysfunction during acute hyperglycemia in subjects with atherosclerotic risk factors. Circ J 2007;71 (2):202–206. DOI: doi.org/10.1253/circj.71.202.18.
  18. Warboys C.M., de Luca A., Amini N. et al. Disturbed flow promotes endothelial senescence via a p53 dependent pathway. Arterioscler Thromb Vasc Biol 2014;34:985–995. DOI: 10.1161/ATVBAHA.114.303415.
  19. Gorenne I., Kumar S., Gray K. et al. Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation 2013;127:386–396. DOI: 10.1161/CIRCULATIONAHA.112.124404.
  20. Dalager S., Falk E., Kristensen I.B. et al. Plaque in superficial femoral arteries indicates generalized atherosclerosis and vulnerability to coronary death: an autopsy study. J Vasc Surg 2008;47:296–302. DOI: 10.1016/j.jvs.2007.10.037.
  21. Claridge M.W., Bate G.R., Hoskins P.R. et al. Measurement of arterial stiffness in subjects with vascular disease: Are vessel wall changes more sensitive than increase in intima-media thickness? Atherosclerosis 2009;205:477–480. DOI: 10.1016/j.atherosclerosis.2008.12.030.
  22. Sommer G., Holzapfel G.A. 3D constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries. Mech Behav Biomed Mater 2012;5:116–128. DOI: 10.1016/j.jmbbm.2011.08.013.
  23. Adiguzel E., Ahmad P.J., Franco C. et al. Collagens in the progression and complications of atherosclerosis. Vascular Medicine 2009;14 (1):73–89. DOI: 10.1177/1358863X08094801.
  24. Kalra S.S., Shanahan C.M. Vascular calcification and hypertension: cause and effect. Ann Med 2012;44 (1):85–92. DOI: 10.3109/07853890.2012.660498.
  25. Demer L.L., Tintut Y. Vascular calcification. Pathobiology of a multifaceted disease. Circulation 2008;117:2938–2948. DOI: 10.1161/CIRCULATIONAHA.107.743161.
  26. Uz O., Kardeşoğlu E., Yiğiner O. et al. The relationship between coronary calcification and the metabolic markers of osteopontin, fetuin-A, and visfatin. Turk Kardiyol Dern Ars 2009;37:397–402.
  27. Ivanova M. V., Chernyavskyi A. M., Ragino U. I. et al. Communication osteonectin with some biomarkers in the stenotic atherosclerosis and coronary artery calcification. Russian Journal of Cardiology 2010;4:20–24. Russian (Иванова М. В., Чернявский А. М., Рагино Ю. И. и др. Связь остеонектина с некоторыми биомаркерами при стенозирующем атеросклерозе и кальцинозе коронарных артерий. Российский кардиологический журнал 2010;4:20–24).
  28. Lee S., Choi E.K., Chang H.-J. et al. Subclinical coronary artery disease as detected by coronary computed tomography angiography in an asymptomatic population. Korean Circ J 2010;40 (9):434–41. DOI: 10.4070/kcj.2010.40.9.434.
  29. Lai H.M., Holtzman D., Aronow W.S. et al. Association of coronary artery calcium with severity of myocardial ischemia in left anterior descending, left circumflex, and right coronary artery territories. Clin Cardiol 2012;35 (1):61–63. DOI: 10.1002/clc.20997.
  30. Enrico B., Suranyi P., Thilo C. et al. Coronary artery plaque formation at coronary CT angiography: morphological analysis and relationship to hemodynamics. Eur Radiol 2009;19 (4):837–44. DOI: 10.1007/s00330-008-1223-3.
  31. Erciyes D., Sener M., Duran C. et al. Segmental distribution of calcium scores in the coronary arteries. Arch Turk Soc Cardiol 2012;40:671–680. DOI: 10.5543/tkda.2012.92170.
  32. Wasilewski J., Niedziela J., Nowakowski A. et al. Тhe role of septal perforators and “myocardial bridging effect” in atherosclerotic plaque distribution in the coronary artery disease. Pol J Radiol 2015;80:195–201. DOI: 10.12659/PJR.893227.
  33. Dweck M.R., Khaw J.H., Sng G.K. et al. Aortic stenosis, atherosclerosis and skeletal bone: is there a common link with calcification and inflammation? Eur Heart J 2013;34 (21):1567–1574. DOI: 10.1093/eurheartj/eht034.
  34. Kataoka Y., Wolski K., Uno K. et al. Calcification as a marker of accelerated progression of coronary atherosclerosis: insights from serial intravascular ultrasound. J Am Coll Cardiol 2012;59:1592–1597. DOI: 10.1016/j.jacc.2012.03.012.
  35. Goettsch C., Hutcheson J.D., Aikawa E. MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms. Circ Res 2013;112:1073–84. DOI: 10.1161/CIRCRESAHA.113.300937.
  36. Otsuka F., Finn A.V., Virmani R . Do vulnerable and ruptured plaques hide in heavily calcified arteries? Atherosclerosis 2013;229 (1):34–37. DOI: 10.1016/j.atherosclerosis.2012.12.032.
  37. Giannoglou G.D., Antoniadis A.P., Chatzizisis Y.S. et al. Difference in the topography of atherosclerosis in the left versus right coronary artery in patients referred for coronary angiography. BMC Cardiovasc Disord 2010;10:26. DOI: 10.1186/1471-2261-10-26.
  38. Chatzizisis Y.S., Baker A.B., Sukhova G.K. et al. Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress colocalize with coronary atheromata with thin fibrous caps in pigs. Circulation 2011;123:621–630. DOI: 10.1161/CIRCULATIONAHA.110.970038.
  39. Lillie M.A., Shadwick R.E., Gosline J.M. Mechanical anisotropy of inflated elastic tissue from the pig aorta. J Biomech 2010;43:2070–2078. DOI: 10.1016/j.jbiomech.2010.04.014.
  40. Zhang W., Wang C., Kassab G.S. The mathematical formulation of a generalized Hooke's law for blood vessels. Biomaterials 2007;28:3569–3578. DOI:10.1016/j.biomaterials.2007.04.030.
  41. Chiu J.-J., Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011;91 (1):327–387. DOI: 10.1152/physrev.00047.2009.
  42. Nakaura T., Nagayoshi Y., Awai K. et al. Myocardial bridging is associated with coronary atherosclerosis in the segment proximal to the site of bridging. J Cardiol 2013;63 (2):134–139. DOI: 10.1016/j.jjcc.2013.07.005.
  43. Nakanishi R., Rajani R., Ishikawa Y. et al. Myocardial bridging on coronary cta: An innocent bystander or a culprit in myocardial infarction? J Cardiovasc Comput Tomogr 2012;6 (1):3–13. DOI: 10.1016/j.jcct.2011.10.015.
  44. Czekajska-Chehab E., Staśkiewicz G., Orzechowski P. et al. Multiple myocardial bridges of coronary arteries in ECG-gated MSCT. Pol J Radiol 2010;75 (1):154–155. DOI: 10.12659/PJR.893227.
  45. Chatzizisis Y.S., Giannoglou G.D. Myocardial bridges spared from atherosclerosis: overview of the underlying mechanisms. Can J Cardiol 2009;25 (4):219–222. DOI: http://dx.doi.org/10.1016/S0828-282X (09) 70065–0.
Pykhteev V. S., Lashevich K. A., Bogdan A. P., Belash S. A. Specific Characteristics of Coronary Atherosclerosis. Kardiologiia. 2017;57(7):61–65.

To access this material please log in or register

Register Authorize
Ru En