To access this material please log in or register

Register Authorize

The Role of Macrophages in Repair of Injured Myocardium and Perspectives of Metabolic Reprogramming of Immune Cells for Myocardial Post-Infarction Recovery

Stafeev I. S.1, 2, Menshikov M. Y.1, Tkachuk V. A.1, 2, Parfyonova Ye. V.1, 2
1 National Medical Research Center for Cardiology, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia

Keywords: macrophages; myocardial infarction; immunometabolism

DOI: 10.18087/cardio.2017.12.10067

A new trend in modern experimental cardiology is the development of approaches to correction of reparation after myocardial infarction (MI) with the use of specific effects on immune cells. One of the main targets for such interventions is the process of macrophage’s polarization in the infarction zone. Proinflammatory M1‑macrophages contribute to hampered myocardial repair, in contrast to M2‑macrophages that promote regeneration. Currently, there are two main ways of targeted delivery of agents necessary for macrophage reprogramming – inlipoid and inglycan-encapsulated particles. As modulating agents, small interfering RNA and other genetic constructions are usually used. Both these approaches are currently awaiting their translation into cardiology. The most physiological approach to reprogramming of immune cells may consist in attempts to switch the metabolism of the immune cell from glycolytic to oxidative, which allows macrophages to switch from M1 to M2 phenotype. Among possible targets for macrophage reprogramming, it is worthwhile to isolate the protein complex mTORC1, the blocking of which promotes oxidative metabolism, and the transcription factor HIF-1α, the blocking of which also facilitates the switching of the metabolism from glycolytic to oxidative one.
  1. WHO Statistical report "World Health Statistics", 2014.
  2. Ortega-Gomez A., Perretti M., Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol Med 2013;5:661–674. DOI: 10.1002/emmm.201202382.
  3. Heidt T., Courties G., Dutta P. et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res 2014;115:284–295. DOI: 10.1161/CIRCRESAHA.115.303567.
  4. Weinberger T., Schulz C. Myocardial infarction: a critical role of macrophages in cardiac remodeling. Front Physiol 2015;6:1–8. DOI: 10.3389/fphys.2015.00107.
  5. Hoffman U., Frantz S. Role of lymphocytes in myocardial injury, healing and remodeling after myocardial infarction. Circ Res 2015;16:354–367. DOI: 10.1161/CIRCRESAHA.116.304072.
  6. De Couto G., Liu W., Tseliou E. et al. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J Clin Invest 2015;125:3147–3162. DOI: 10.1172/JCI81321.
  7. Shiraishi M., Shintani Y., Shintani Y. et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest 2016;126:2151–2166. DOI: 10.1172/JCI85782.
  8. Grunewald M., Avraham I., Dor Y. et al. VEGF-induced adult neovascularization: recruitment, retention and role of accessory cells. Cell 2006;124:175–189. DOI: 10.1016/j.cell.2005.10.036.
  9. Moldovan N., Goldschmit-Clermont P., Parker-Thornburg J. et al. Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res 2000;87:378–384. DOI: 10.1161/01.RES.87.5.378.
  10. Ogle M., Segar C., Sridhar S., Botchwey E. Monocytes and macrophages in tissue repair: implications for immunoregenerative biomaterial design. Exp Biol Med 2016;241:1084–1097. DOI: 10.1177/1535370216650293.
  11. Nahrendorf M., Pittet M., Swirski F. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 2010;121:2437–2445. DOI: 10.1161/CIRCULATIONAHA.109.916346.
  12. Panizzi P., Swirski F., Figueiredo J. et al. Impaired infarct healing in atherosclerotic mice with Ly-6Chi monocytosis. J Am Coll Cardiol 2010;55:1629–1638. DOI: 10.1016/j.jacc.2009.08.089.
  13. Fried S. K., Bunkin D. A., Greenberg A. S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 1998;83:847–850. DOI: 10.1210/jcem.83.3.4660.
  14. Zlatanova I., Pinto C., Silvestre J. Immune modulation of cardiac repair and regeneration: the art of mending broken hearts. Front Cardiovasc Med 2016;3:1–8. DOI: 10.3389/fcvm.2016.00040.
  15. Martinez F., Gordon S., Locati M., Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006;177:7303–7011. DOI: 10.4049/jimmunol.177.10.7303.
  16. Durante W., Johnson F., Johnson R. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol 2007;34:906–911. DOI: 10.1111/j.1440–1681.2007.04638.x.
  17. O’Meara C., Wamstad J., Gladstone R. et al. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res 2015;116:804–815. DOI: 10.1161/CIRCRESAHA.116.304269.
  18. Frantz S., Nahrendorf M. Cardiac macrophages and their role in ischemic heart disease. Cardiovasc Res 2015;102:240–248. DOI: 10.1093/cvr/cvu025.
  19. Leuschner F., Dutta P., Gorbatov R. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotecnol 2011;29:1005–1010. DOI: 10.1038/nbt.1989.
  20. Majmudar M., Keliher E., Heidt T. et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 2013;127:2038–2046. DOI: 10.1161/CIRCULATIONAHA.112.000116.
  21. Courties G., Heidt T., Sebas M. et al. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J Am Coll Cardiol 2014;63:1556–1566. DOI: 10.1016/j.jacc.2013.11.023.
  22. Aouadi M., Tencerova M., Vangala P. et al. Gene silencing in adipose tissue macrophages regulates whole-body metabolism in obese mice. PNAS 2013;110:8278–8283. DOI: 10.1073/pnas.1300492110.
  23. Tencerova M., Aouadi M., Vangala P. et al. Activated Kupffer cells inhibit insulin sensitivity in obese mice. FASEB J 2015;29:2959–2969. DOI: 10.1096/fj.15–270496.
  24. Weber G. F. Metabolism in cancer metastasis. Int J Cancer 2016;138:2061–2066. DOI: 10.1002/ijc.29839.
  25. Dupuy F., Tabariès S., Andrzejewski S. et al. PDK1‑dependent metabolic reprogramming dictates metabolic potential in breast cancer. Cell Metab 2015;22:577–589. DOI: 10.1016/j.cmet.2015.08.007.
  26. Yoshida G. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res 2015;34:111. DOI: 10.1186/s13046‑015‑0221‑y.
  27. Yoshikawa M., Tsuchihashi K., Ishimoto T. et al. xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFRtargeted therapy in head and neck squamos cell carcinoma. Cancer Res 2013;73:1855–1866. DOI: 10.1158/0008–5472.CAN-12–3609‑T.
  28. Nicolau-Galmés F., Asumendi A., Alonso-Tejerina E. et al. Terfenadine induce apoptosis and autophagy in melanoma cells through ROS-dependent and -independent mechanisms. Apoptosis 2011;16:1253–1267. DOI: 10.1007/s10495‑011‑0640‑y.
  29. Jeong H., Oh H., Nam S. et al. The critical role of mast cellsderived hypoxia-inducible factor-1alpha in human and mouse melanoma growth. Int J Cancer 2013;132:2492–2501. DOI: 10.1002/ijc.27937.
  30. Barbieri F., Thellung S., Ratto A. et al. In vivo and in vitro antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumours. BMC Cancer 2015;15:228. DOI: 10.1186/s12885‑015‑1235‑8.
  31. Kato H., Sekine Y., Furuya Y. et al. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor. Biochem Biophys Res Commun 2015;461:115–121. DOI: 10.1016/j.bbrc.2015.03.178.
  32. Freemerman A., Johnson A., Sacks G. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1) – mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 2014;289:7884–7896. DOI: 10.1074/jbc.M113.522037.
  33. Kelly B., O’Neill L. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 2015;25:771–784. DOI: 10.1038/cr.2015.68.
  34. Krawczyk C., Holowka T., Sun J. et al. Toll-like receptorinduced changes in glycolitic metabolism regulate dendritic cell activation. Blood 2010;115:4742–4749. DOI: 10.1182/blood-2009‑10‑249540.
  35. Dang E., Barbi J., Yang H. et al. Control of T (H) 17 / Tregbalance by hypoxia-inducible factor 1. Cell 2011;146:772–784. DOI: 10.1016/j.cell.2011.07.033.
  36. Corcoran S., O’Neill L. HIF1alpha and metabolic reprogramming in inflammation. J Clin Invest 2016;126:3699–3707. DOI: 10.1172/JCI84431.
  37. Saxton R., Sabatini D. mTOR signaling in growth, metabolism and disease. Cell 2017;168:960–976. DOI: 10.1016/j.cell.2017.02.004.
  38. Rathnasamy G., Ling E., Kaur C. Hypoxia-inducible factor-1alpha mediates iron uptake which induces inflammatory response in amoeboid microglial cells in development periventricular white matter through MAP kinase pathway. Neuropharmacology 2014;77:428–440. DOI: 10.1016/j.neuropharm.2013.10.024.
  39. Li J., Jiang G., Chen Y. et al. Altered expression of hypoxia-inducible factor-1alpha participates in epileptogenesis in animal models. Synapse 2014;68:402–409. DOI: 10.1002/syn.21752.
  40. Narita T., Yin S., Gelin C. F. et al. Identification a novel small molecule HIF-1α translation inhibitor. Clin Cancer Res 2009;15:6128–6136. DOI: 10.1158/1078–0432.CCR-08–3180.
  41. Yu P., Hong C., Sachidanandan C. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 2008;4:33–41. DOI: 10.1038/nchembio.2007.54.
  42. Meley D., Bauvy C., Houben-Weerts J. et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 2006;281:34870–34879. DOI: 10.1074/jbc.M605488200.
  43. Horbelt D., Boergermann J., Chaikuad A. et al. Small molecules dorsomorphin and LDN-193189 inhibit myostatin / GDF8 signaling and promote functional myoblast differentiation. J Biol Chem 2014;290:3390–3404. DOI: 10.1074/jbc.M114.604397.
  44. Hao J., Daleo M., Murphy C. et al. Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS One 2008;3: e2904. DOI: 10.1371/journal.pone.0002904.
  45. Garulli C., Kalogris C., Pietrella L. et al. Dorsomorphin reverses the mesenchymal phenotype of breast cancer initiating cells by inhibition of bone morphogenic protein signaling. Cell Signaling 2014;26:352–362. DOI: 10.1016/j.cellsig.2013.11.022.
  46. Habib A., Finn A. V. The role of iron metabolism as a mediator of macrophages inflammation and lipid handling in atherosclerosis. Front Pharmacol 2014;5:1–6. DOI: 10.3389/fphar.2014.00195.
  47. Sag D., Carling D., Stout R., Suttles J. AMP-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 2008;181:8633–8641. DOI: 10.4049/jimmunol.181.12.8633.
  48. Riboldi E., Porta C., Morlacchi S. et al. Hypoxia-mediated regulations of macrophage functions in pathophysiology. Int Immunol 2012;25:67–75. DOI: 10.1093/intimm/dxs110.
  49. Polizzotti B. D., Arab S., Kuhn B. Intrapericardial delivery of gelfoam enables the targeted delivery of periostine peptide after myocardial infarction by inducing fibrin clot formation. PLoS One 2012;7: e36788. DOI: 10.1371/journal.pone.0036788.
Stafeev I. S., Menshikov M. Y., Tkachuk V. A., Parfyonova Ye. V. The Role of Macrophages in Repair of Injured Myocardium and Perspectives of Metabolic Reprogramming of Immune Cells for Myocardial Post-Infarction Recovery. Kardiologiia. 2017;57(12):53–59.

To access this material please log in or register

Register Authorize
Ru En